精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=4AD=8,点EAD上一点,将△ABE沿BE折叠得到△FBE,点GCD上一点,将△DEG沿EG折叠得到△HEG,且EFH三点共线,当△CGH为直角三角形时,AE的长为________

【答案】

【解析】

根据折叠性质可得AE=FEAB=BF=4,∠A=BFE=90°,DE=HEDG=HG,∠EHG=D=90°,证CHF三点共线,在RtBFC中,利用勾股定理可得.

∵把△ABE沿BE折叠,使点A落在点F处,
AE=FEAB=BF=4,∠A=BFE=90°,
∵把△DEF沿EG折叠,使点D落在直线EF上的点H处,
DE=HEDG=HG,∠EHG=D=90°,
AE=FE=x,则DE=EH=8-x
∵△CGH为直角三角形,
∴∠CHG=EHG=90°,

CHF三点共线,
CF=EC-EF=8-2x
RtBFC中,
BC2=BF2+CF2
82=42+8-2x2

解得x=

AE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的外接圆,,延长到点,使得,连接于点,过点的平行线交于点

1)求证:

2)求证:的切线;

3)若,求弦的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中,∠A60°,MAD边的中点,NAB边上的一动点,将△AMN沿MN所在直线翻折得到△AMN,连接AC,则AC长度的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线ykx与抛物线yax2+bx+交于点AC,与y轴交于点B,点A的坐标为(20),点C的横坐标为﹣8

1)请直接写出直线和抛物线的解析式;

2)点D是直线AB上方的抛物线上一动点(不与点AC重合),作DEAC于点E.设点D的横坐标为m.求DE的长关于m的函数解析式,并写出DE长的最大值;

3)平移AOB,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A对应点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.

a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x5050≤x6060≤x7070≤x8080≤x9090≤x≤100

b.乙部门成绩如下:

40 52 70 70 71 73 77 78 80 81

82 82 82 82 83 83 83 86 91 94

c.甲、乙两部门成绩的平均数、方差、中位数如下:

平均数

方差

中位数

79.6

36.84

78.5

77

147.2

m

d.近五年该单位参赛员工进入复赛的出线成绩如下:

2014

2015

2016

2017

2018

出线成绩(百分制)

79

81

80

81

82

根据以上信息,回答下列问题:

1)写出表中m的值;

2)可以推断出选择   部门参赛更好,理由为   

3)预估(2)中部门今年参赛进入复赛的人数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知正方形ABCD中,点EF分别在边BCCD上,BE=DFAEAF分别交BD于点GH

1)求证:BG=DH

2)连接FE,如图(2),当EF=BG时.

①求证:ADAH=AFDF

②直接写出的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办学生综合素质大赛,分单人项目双人项目两种形式,比赛题目包括下列五类:.人文艺术;.历史社会;.自然科学;.天文地理;.体育健康.

(1)若小明参加单人项目,他从中抽取一个题目,那么恰好抽中自然科学类题目的概率为_____

(2)小林和小丽参加双人项目,比赛规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,求他们抽到天文地理体育健康类题目的概率是多少?(用画树状图或列表的方法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数图象的一部分,对称轴为,且经过点,有下列说法:①;②;③;④若是抛物线上的两点,则,上述说法正确的是( )

A.①②④B.③④C.①③④D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,∠AOB=90°,点A2,1.

1)求点B的坐标;

2)求经过AOB三点的抛物线的函数表达式;

3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案