精英家教网 > 初中数学 > 题目详情
已知直线y=2x+6与x轴、y轴的交点分别为A、B,又P、Q两点的坐标分别为P(-2,0)、Q(0,k),其中k<6.再以Q点为圆心,PQ长为半径作圆,则:
(1)当k取何值时,⊙Q与直线相切?
(2)说出k在什么范围内取值时,⊙Q与直线AB相离?相交?(只须写出结果,不必写解答过程)
分析:(1)求出A、B的坐标,过Q所作QD⊥AB垂足为D,证Rt△QDB∽Rt△AOB,求出QD,根据QD=PQ,即可求出k的值;
(2)根据(1)的结论和⊙Q与直线AB相离、相交的特点即可求出答案.
解答:解:(1)把x=0代入y=2x+6得:y=6,
把y=0代入y=2x+6得:x=-3,
∴A(-3,O),B(0,6),
如图,过Q所作QD⊥AB垂足为D
由勾股定理得:AB=3
5

∵∠ABO=∠ABO,∠AOB=∠QDB=90°,
∴Rt△QDB∽Rt△AOB,AO=3,QB=6-k,AB=3
5

∴QD=
6-k
5

又QP=
k2+4

6-k
5
=
k2+4

解得:k=-4或k=1,
故当k=-4或k=1时,⊙Q与直线AB相切;

(2)当-4<k<1时,⊙Q与直线AB相离;
当k<-4或1<k<6时,⊙Q与直线AB相交.
点评:本题考查了相似三角形的性质和判定,直线与圆的位置关系的应用,关键是求出k为何值时直线与圆相切,注意:当直线与圆相切时,d=r,当直线与圆相离时,d>r,当直线与圆相交时,d<r.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=2x+8与x轴和y轴的交点的坐标分别是
 
 
;与两条坐标轴围成的三角形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

现有A、B两枚均匀的小立方体骰子(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知直线y=2x上的概率为(  )
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=2x与某反比例函数图象的一个交点的横坐标为2.
(1)求这个反比例函数的关系式;
(2)在直角坐标系内画出这条直线和这个反比例函数的图象;
(3)试比较这两个函数性质的相似处与不同处;
(4)根据图象写出:使这两个函数值均为非负数且反比例函数大于正比例函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=2x+4与x轴、y轴的交点分别为A、B,y轴上点C的坐标为(0,2),在x轴的正半轴上找一点P,使以P、O、C为顶点的三角形与△AOB相似,则点P的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=-2x-4与x轴、y轴分别交于A、B两点,点C在x轴负半轴上,AC=2.
(1)点P在直线y=-2x-4上,△PAC是以AC为底的等腰三角形,
①求点P的坐标和直线CP的解析式;
②请利用以上的一次函数解析式,求不等式-x-2>x+4的解集.
(2)若点M(x,y)是射线AB上的一个动点,在点M的运动过程中,试写出△BCM的面积S与x的函数关系式,并画出函数图象.

查看答案和解析>>

同步练习册答案