精英家教网 > 初中数学 > 题目详情
11、如图所示,四边形ABED与四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,?ABED的面积是36cm2,则四边形ABCD的周长为(  )
分析:由于AG=3,DG=4,AG是平行四边形ABED的高,DG是平行四边形AFCD的高,又两平行四边形面积为36,由此可以求出DE,AB,CD,AF又△AGD是直角三角形根据勾股定理可以求出AD,BE,CF,然后延长CD与BA延长线交于H,可得△BHC是直角三角形,然后利用勾股定理和已知条件可以求出CH,BH,接着求出BC,最后就可以求出ABCD的周长.
解答:解:∵AG=3,DG=4,
∴AG是平行四边形ABED的高,DG是平行四边形AFCD的高,
又两个平行四边形面积为36,
∴DE=AB=12,CD=AF=9,
又△AGD是直角三角形,
∴AD=BE=CF=5
如图,延长CD与BA延长线交于H,
可得CH=CD+DH=CD+AG=12,BH=ED+DG=16,
而△BHC是直角三角形,
则BC=20,
∴ABCD周长为AB+BC+CD+DA=12+20+9+5=46.
故选D.
点评:主要考查了平行四边行的基本性质和平行四边形面积的求法.本题的解题关键是利用面积求出各边的长,从而求出周长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案