【题目】如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,
(1)证明:△ABD≌△BCE;
(2)证明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)BD=2.
【解析】
(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;
(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;
(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=ADDF=(AF+DF)DF.
解:(1)∵△ABC是等边三角形,
∴AB=BC,∠ABD=∠BCE,
在△ABD与△BCE中
∵,
∴△ABD≌△BCE(SAS);
(2)由(1)得:∠BAD=∠CBE,
又∵∠ABC=∠BAC,
∴∠ABE=∠EAF,
又∵∠AEF=∠BEA,
∴△AEF∽△BEA;
(3)∵∠BAD=∠CBE,∠BDA=∠FDB,
∴△ABD∽△BDF,
∴,
∴BD2=ADDF=(AF+DF)DF=8,
∴BD=2.
科目:初中数学 来源: 题型:
【题目】如图,直线y=-2x-10与x轴交于点A,直线y=-x交于点B,点C在线段AB上,⊙C与x轴相切于点P,与OB切于点Q.求:(1)A点的坐标;(2)OB的长;(3)C点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下框中是小明对一道题目的解答以及老师的批改.
题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?
解:设矩形蔬菜种植区域的宽为x_m,则长为2xm,
根据题意,得x·2x=288.
解这个方程,得x1=-12(不合题意,舍去),x2=12,
所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)
答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.
我的结果也正确!
小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.
结果为何正确呢?
(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?
(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为( ).
A. (0,﹣2) B. (0,﹣) C. (0,﹣) D. (0,﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某购物中心试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价且获利不得高于 50%.经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数yx140.
(1)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价为多少元时,可获得最大利润?最大利润是多少元?
(2)当获得利润为1200元时,求销售单价.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com