精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等边三角形,点DE分别在BCAC上,且BDCEADBE相交于点F

(1)证明:△ABD≌△BCE

(2)证明:△ABE∽△FAE

(3)AF7DF1,求BD的长.

【答案】(1)证明见解析;(2)证明见解析;(3)BD2

【解析】

1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE
2)由△ABD≌△BCE得∠BAD=CBE,又∠ABC=BAC,可证∠ABE=EAF,又∠AEF=BEA,由此可以证明△AEF∽△BEA
3)由△ABD≌△BCE得:∠BAD=FBD,又∠BDF=ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=ADDF=(AF+DF)DF.

解:(1)∵△ABC是等边三角形,

ABBC,∠ABD=∠BCE

在△ABD与△BCE

∴△ABD≌△BCESAS);

2)由(1)得:∠BAD=∠CBE

又∵∠ABC=∠BAC

∴∠ABE=∠EAF

又∵∠AEF=∠BEA

∴△AEF∽△BEA

3)∵∠BAD=∠CBE,∠BDA=∠FDB

∴△ABD∽△BDF

BD2=ADDF=(AF+DF)DF=8

BD2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=-2x-10x轴交于点A,直线y=-x交于点B,C在线段AB上,⊙Cx轴相切于点P,与OB切于点Q.求:(1)A点的坐标;(2)OB的长;(3)C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,则下列结论中:①⑤当时,的增大而增大.以上结论正确的有________(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yy在第一象限内的图象如图,点Py的图象上一动点,PCx轴于点C,交y的图象于点B.给出如下结论:①△ODBOCA的面积相等;②PAPB始终相等;③四边形PAOB的面积大小不会发生变化;④CAAP.其中所有正确结论的序号是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下框中是小明对一道题目的解答以及老师的批改.

题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?

解:设矩形蔬菜种植区域的宽为x_m,则长为2xm,

根据题意,得x·2x=288.

解这个方程,得x1=-12(不合题意,舍去),x2=12,

所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)

答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.

我的结果也正确!

小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.

结果为何正确呢?

(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?

(2)如图,矩形ABCD在矩形ABCD的内部,ABAB′,ADAD,且ADAB=2∶1,设ABAB′、BCBC′、CDCD′、DADA之间的距离分别为abcd,要使矩形ABCD′∽矩形ABCDabcd应满足什么条件?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕顶点C逆时针旋转得到△ABC,且点B刚好落在AB′上,若∠A=25°,∠BCA′=45°,求∠ABA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为(  ).

A. (0,﹣2) B. (0,﹣ C. (0,﹣ D. (0,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某购物中心试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价且获利不得高于 50%.经试销发现,销售量y(件与销售单价x(元的关系符合一次函数yx140.

(1)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价为多少元时,可获得最大利润?最大利润是多少元?

(2)当获得利润为1200元时,求销售单价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一组自然数1,2,3…k,去掉其中一个数后剩下的数的平均数为16,则去掉的数是________

查看答案和解析>>

同步练习册答案