【题目】如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).
(1)如图2,若与半圆相切,求的值;
(2)如图3,当与半圆有两个交点时,求线段的取值范围;
(3)若线段的长为20,直接写出此时的值.
【答案】(1);(2);(3)或
【解析】
(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;
(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;
(3)设PG=GH=m,则:,求出,利用,即可求解.
(1)如图,连接
∵与半圆相切,∴,∴,
在矩形中,,
∵,根据勾股定理,得
在和中,
∴
∴
(2)如图,
当点与点重合时,
过点作与点,则
∵
且,由(1)知:
∴,∴,
∴
当与半圆相切时,由(1)知:,
∴
(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,
则PG=GH,
,则,
设:PG=GH=m,则:,
,
整理得:25m2-640m+1216=0,
解得:,
.
科目:初中数学 来源: 题型:
【题目】综合与实践
纸是我们学习工作最常用的纸张之一, 其长宽之比是,我们定义:长宽之比是的矩形纸片称为“标准纸”.
操作判断:
如图1所示,矩形纸片是一张“标准纸”,将纸片折叠一次,使点与重合,再展开,折痕交边于点交边于点,若求的长,
如图2,在的基础上,连接折痕交于点,连接判断四边形的形状,并说明理由.
探究发现:
如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点与点重合,再展开,痕交边于点,交边于点交也是点.然后将四边形剪下,探究纸片是否为“标准纸”,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴相交于,两点,与轴相交于点,点在抛物线上,且.与轴相交于点,过点的直线平行于轴,与抛物线相交于,两点,则线段的长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,点P为AB边上的一个动点,连接PC,过点P作PQ⊥PC交BC边于点Q,则BQ的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展征文活动,征文主题只能从“爱国”、“敬业”、“诚信”、“友善”四个主题中选择一个,每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)将上面的条形统计图补充完整;
(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是_____度;
(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有______名;
(4)学生会宣传部有七年级的2名男生和2名女生,现从中随机挑选2名同学参加“主题征文”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣小组的同学们对函数的图象和性质进行了探究,已知时,函数的图象的对称轴为直线,顶点在轴上,与轴的交点坐标为,探究过程如下,请补充过程:
(1) , , .
(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质: .
(3)进一步探究函数图象并解决问题:
①若有三个实数解,则的取值范围为: .
②若函数的图象与该函数有三个交点,则的取值范围为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级某班联欢会上,节目组设计了一个即兴表演节目游戏,在一个不透明的盒子里,放有五个完全相同的乒乓球,乒乓球上分别标有数字1,2,3,4,5,游戏规则是:参加联欢会的50名同学,每人同时从盒子里一次摸出两个乒乓球,若两球上数字之和是偶数就给大家即兴表演一个节目;否则,下一个同学依次进行,直至50名同学都模完,
(1)若小朱是该班同学,用列表法或画树状图法求小朱同学表演节目的概率
(2)若参加联欢会的同学每人都有一次摸球的机会,请估计本次联欢会上有多少个同学表演节目?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com