精英家教网 > 初中数学 > 题目详情

求证:如果一条直线与两条平行线中的一条垂直那么它与另一条直线也垂直.

答案:
解析:

  解:已知:如图a∥b.c⊥a

  求证:c⊥b

  证明:∵a∥b(已知)

  ∴∠2=∠1(两直线平行同位角相等)

  ∵c⊥a(已知)

  ∴∠1=90°(垂直的定义)

  ∴∠2=90°(等量代换)

  ∴c⊥b(垂直定义)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示△ABC,△DBE,两直角边交于点F,过点F作FG∥BC交AB于点G,连接BF、AD,则线段BF与线段AD的数量关系是
 
;直线BF与直线AD的位置关系是
 
,并求证:FG+DC=AC;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,则FG、DC、AC之间满足的数量关系式是
 

(3)在(2)的条件下,若AG=7
2
,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),线段DF分别与线段BQ、BP相交于M、N两点,若PG=2,求线段MN的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

29、先阅读理解两条正确结论,并用这两条结论完成应用与探究.阅读:
正确结论1.在图甲△ABC中,如果D是AB的中点,DE∥BC交AC于点E,那么E也是AC的中点,及DE是中位线.
正确结论2.在图乙梯形ABCD中,如果E为腰AB的中点且EF∥AD∥BC.那么F也是CD的中点,及EF是中位线.
应用:如图丙,已知,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.
探究:如图丁,若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧,则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邯郸一模)(1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.
求证:AB=DE,AB⊥DE;
(2)如果将(1)中的两个正方形换成两个矩形,如图2,且
AC
CD
=
BC
CE
=
3
,则AB与DE的数量关系与位置关系会发生什么变化?请说明你的看法和理由.
(3)如果将(1)中的两个正方形换成两个直角三角形,如图3,∠BCE=∠ACD=90°,且
AC
CD
=
BC
CE
=k,且请直接写出AB与DE的数量关系与位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.已知由平行四边形ABCD各顶点向形外一条直线l作垂线,设垂足分别为A′,B′,精英家教网C′,D′.
(1)求证:A′A+C′C=B′B+D′D;
(2)如果移动直线l,使它与四边形ABCD的位置关系相对变动得更特殊一些(如l过A,或l交AB,BC等),那么,相应地结论会有什么变化?试作出你的猜想和证明;
(3)如果考虑直线l和平行四边形更一般的关系(如平行四边形变成圆,或某一中心对称图形,垂线AA',BB',CC',DD'只保持平行等),那么又有什么结论,试作出你的猜想和证明.

查看答案和解析>>

同步练习册答案