精英家教网 > 初中数学 > 题目详情
11.解方程x2+6x+1=0.

分析 配方法求解可得.

解答 解:∵x2+6x=-1,
∴x2+6x+9=-1+9,即(x+3)2=8,
∴x+3=±2$\sqrt{2}$,
则x=-3±2$\sqrt{2}$.

点评 本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中$\widehat{AB}$上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,画出图形,探究线段AD、BD、CD之间的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在平面直角坐标系中,正方形ABCD的位置如下图所示,点A的坐标为(1,0),点D的坐标为(0,3).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2012个正方形的面积为(  )
A.$\sqrt{10}$×($\frac{4}{3}$)4022B.10×($\frac{4}{3}$)4022C.5×($\frac{4}{3}$)4022D.10×($\frac{4}{3}$)4023

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图1,在边长为4的正△ABC中,点P以每秒1cm的速度从点A出发,沿折线AB-BC运动,到点C停止.过点P作PD⊥AC,垂足为D,PD的长度y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5.5秒时,PD的长是(  )
A.$\frac{5\sqrt{3}}{4}$cmB.$\frac{5\sqrt{3}}{2}$cmC.2$\sqrt{3}$cmD.3$\sqrt{3}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,已知A点坐标为($\sqrt{3}$,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=60°,则b的值为(  )
A.3$\sqrt{3}$-3B.$\sqrt{3}$+3C.2$\sqrt{3}$+3D.2$\sqrt{3}$-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【提出问题】已知如图1,P是∠ABC、∠ACB的角平分线的交点,你能找到∠P、∠A的关系吗?
【分析问题】在解决这个问题时,某小组同学是这样做的:
先赋予∠A几个特殊值:
当∠A=80°时,计算出∠P=130°;
当∠A=40°时,计算出∠P=110°;
当∠A=100°时,计算出∠P=140°;
…由以上特例猜想∠P与∠A的关系为:∠P=90°+$\frac{1}{2}$∠A.再证明这一结论:
证明:∵点P是∠ABC、∠ACB的角平分线的交点.
∴∠PBC=$\frac{1}{2}$∠ABC;∠PCB=$\frac{1}{2}$∠ACB
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
又∵∠A+(∠ABC+∠ACB)=180°
∴∠ABC+∠ACB=180°-∠A
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
=$\frac{1}{2}$(180°-∠A)
∴∠P=180°-(∠PBC+∠PCB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A
【解决问题】请运用以上解决问题的“思想方法”解决下面的几个问题:
(1)如图2,若点P时∠ABC、∠ACB的三等分线的交点,即∠PBC=$\frac{1}{3}$∠ABC,∠PCB=$\frac{1}{3}$∠ACB,猜测∠P与∠A的关系为∠P=$\frac{1}{3}$∠A+$\frac{2}{3}$×180°,证明你的结论.
(2)若点P时∠ABC、∠ACB的四等分线的交点,即∠PBC=$\frac{1}{4}$∠ABC,∠PCB=$\frac{1}{4}$∠ACB,则∠P与∠A的关系为∠P=$\frac{1}{4}$∠A+$\frac{3}{4}$×180°.(直接写出答案,不需要证明)
(3)若点P时∠ABC、∠ACB的n等分线的交点,即∠PBC=$\frac{1}{n}$∠ABC,∠PCB=$\frac{1}{n}$∠ACB,则∠P与∠A的关系为$\frac{n-1}{n}$•180°+$\frac{1}{n}$∠A.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中四边形ABCD为菱形,边AD在y轴上.其中A(0,1),B(-$\sqrt{3}$,0),双曲线y=$\frac{m}{x}$经过点C.
(1)求反比例函数的解析式;
(2)连接CO并延长交双曲线于点E,连接DE,P是双曲线在第一象限上的一个动点,满足S△BDP=2S△CDE,求点P的坐标;
(3)将直线BD沿x轴向右平移,交x轴于点K,交射线BA于点H,问是否存在某一时刻,使得△KOH为等腰三角形?若存在求出线段OK的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知一次函数y=kx+b经过第二,三,四象限,则反比例函数y=-$\frac{k}{x}$图象在第一、三象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.因式分解
(1)2x3+12x2+18x;
(2)a2-2ab-4+b2

查看答案和解析>>

同步练习册答案