精英家教网 > 初中数学 > 题目详情
已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.
分析:(1)根据判别式得到关于a的方程,即可得到a的值;
(2)由于PB是圆的直径,且AB切圆于B,得PB⊥AB,由此可证得△PBC1∽△BAO,根据两个相似三角形的对应直角边成比例,即可得到PC1、BC1的比例关系,可根据这个比例关系来设P点的坐标,联立抛物线的解析式即可求出P点的坐标;
(3)连接CM,设CM与PB的交点为Q,由于C、M关于直线PB对称,那么PB垂直平分CM,即CQ=QM;过M作MD⊥x轴于D,取CD的中点E,连接QE,则QE是Rt△CMD的中位线;在Rt△PCB中,CQ⊥OB,QE⊥BC,易证得∠BQE、∠QCE都和∠CPQ相等,因此它们的正切值都等于
1
2
(在(2)题已经求得);由此可得到CE=2QE=4BE,(2)中已经求出了CB的长,根据CE、BE的比例关系,即可求出BE、CE、QE的长,由此可得到Q点坐标,也就得到M点的坐标,然后将点M代入抛物线的解析式中进行判断即可.
解答:解:(1)依题意有△=1+a=0,
解得a=-1;

(2)设P为二次函数图象上的一点,过点P作PC⊥x轴于点C1
∵y=-
1
4
x2+x-1顶点为B(-2,0),图象与y轴的交点坐标为A(0,-1),
∵以PB为直径的圆与直线AB相切于点B,
∴PB⊥AB,则∠PBC1=∠BAO
∴Rt△PC1B∽Rt△BOA
PC1
OB
=
BC1
AO
,故PC1=2BC1
设P点的坐标为(x,y),
∵∠ABO是锐角,∠PBA是直角,
∴∠PBO是钝角,
∴x>2
∴BC1=x-2,PC1=2x-4,
即y=4-2x,
∴P点的坐标为(x,4-2x)
∵点P在二次函数y=-
1
4
x2+x+1的图象上,
∴4-2x=-
1
4
x2+x-1,
解得:x1=-2,x2=10
∵x>2,
∴x=10,
∴P点的坐标为:(10,-16);

(3)点M不在抛物线y=-
1
4
x2+x+a上,
由(2)知:C1为圆与x轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ,
∴QE∥MD,QE=
1
2
MD,QE⊥CE
∵CM⊥PB,QE⊥CE,PC⊥x轴
∴∠QCE=∠EQB=∠CPB
∴tan∠QCE=tan∠EQB=tan∠CPB=
1
2

CE=2QE=2×2BE=4BE,
又∵CB=8,
故BE=
8
5
,QE=
16
5

∴Q点的坐标为(
18
5
,-
16
5

可求得M点的坐标为(
14
5
,-
32
5

∵-
1
4
×(
14
5
2+
14
5
-1=-
144
25
≠-
32
5

∴C点关于直线PB的对称点M不在抛物线y=-
1
4
x2+x+a上.
点评:此题是二次函数的综合题,涉及到二次函数解析式的确定,圆周角定理,相似三角形的判定和性质,轴对称的性质,三角形中位线定理,解直角三角形的应用等重要知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)|2-tan60°|-(π-3.14)0+(-
1
2
-2+
1
2
12

(2)已知正比例函数y=2x的图象与反比例函数y=
k
x
的图象有一个交点的纵坐标是2.
①求反比例函数解析式;
②当-3≤x≤-1时,求反比例函数y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图14,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与轴、轴分别交于CD,求过ABD三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011四川泸州,14,3分)已知反比例函数 y=的图象在第一、三象限,则m的取值范围是        

 

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷 题型:填空题

(2011四川泸州,14,3分)已知反比例函数 y=的图象在第一、三象限,则m的取值范围是        

 

查看答案和解析>>

同步练习册答案