精英家教网 > 初中数学 > 题目详情

已知,如图,Rt△ABC中,∠B=90°,∠A=30°,BC=6 cm.点O从A点出发,沿AB以每秒 cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点.过E作EG⊥DE交射线BC于G.

(1)若E与B不重合,问t为何值时,△BEG与△DEG相似?

(2)问:当t在什么范围内时,点G在线段BC上?当t在什么范围内时,点G在线段BC的延长线上?

(3)当点G在线段BC上(不包括端点B、C)时,求四边形CDEG的面积S(cm2)关于时间t(秒)的函数关系式,请问点O运动了几秒钟时,S取得最大值?最大值为多少?

答案:
解析:

  (1)当t=或t=时,△BEG与△DEG相似

  (2)当≤t≤4时,点G在线段BC上;当0<t<时,点G在线段BC的延长线上.

  (3)当点O运动了秒时,S取得最大值 cm2


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.
(1)求证:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O精英家教网C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,点E是AC的中点.
求证:∠EBD=∠EDB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

查看答案和解析>>

同步练习册答案