【题目】如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:
(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?
(2)当t为何值时,△EPQ为等腰三角形?
【答案】(1)s或s;(2)t=1或3或或秒
【解析】
(1)①当PQ⊥AB时,△PQE是直角三角形.证明△PQE∽△ACB,将PE、QE用时间t表示,由三角形对应线段成比例的性质即可求出t值;②当PQ⊥DE时,证明△PQE∽△DAE,将PE、QE用时间t表示,利用三角形对应线段成比例的性质即可求出t值;
(2)分三种情形讨论,①当点Q在线段BE上时,EP=EQ;②当点Q在线段AE上时,EQ=EP;③当点Q在线段AE上时,EQ=QP;④当点Q在线段AE上时,PQ=EP,分别列出方程即可解决问题.
解:(1)在Rt△ABC中,AC=12cm,BC=16cm,
∴AB==20cm.
∵D、E分别是AC、AB的中点.
∴AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=BC=8cm,
①如图1中,PQ⊥AB时,
∵∠PQB=∠ADE=90°,∠AED=∠PEQ,
∴△PQE∽△ADE,
∴,
由题意得:PE=8﹣2t,QE=4t﹣10,
即 ,
解得t=;
②如图2中,当PQ⊥DE时,△PQE∽△DAE,
∴,
∴,
∴t=,
∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.
(2)①如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.
②如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.
③如图5中,当点Q在线段AE上时,由EQ=QP,可得 (8﹣2t):(4t﹣10)=4:5,解得t=.
④如图6中,当点Q在线段AE上时,由PQ=EP,可得 (4t﹣10):(8﹣2t)=4:5,解得t=.
综上所述,t=1或3或 或 秒时,△PQE是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,中,是的角平分线,,在边上,以为直径的半圆经过点,交于点.
(1)求证:是的切线;
(2)已知,的半径为,求图中阴影部分的面积.(最后结果保留根号和)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.
(1)该三角形的外接圆的半径长等于 ;
(2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板按如图所示叠放在一起,其中点B,D重合,若固定△AOB,将△ACD绕着公共顶点A,按逆时针方向旋转α度(0<α<90°),当旋转后的△ACD的一边与△AOB的某一边平行时,写出所有满足条件的α的值____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).
(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?
(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com