精英家教网 > 初中数学 > 题目详情
(2005•武汉)已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.
【答案】分析:(1)已知x1<x2,|x1|>|x2|,很显然,x1<0,x2>0,因此OA=-x1,OB=x2,然后根据OA2+OB2=2OC+1,以及一元二次方程根与系数的关系即可求出m的值.也就可得出函数的解析式.
(2)可根据抛物线的解析式求出C点的坐标,然后分两种情况进行讨论:
①过C的直线与y轴平行(或与x轴垂直),那么此时直线与抛物线只有一个交点.
②如果直线不与y轴平行,可根据C点坐标,设出直线的解析式,然后联立抛物线的解析式可得出一个关于x的一元二次方程,因为两函数只有一个交点,因此方程的△=0,由此可求出直线的解析式.
解答:解:(1)由条件知AO=|x1|=-x1,OB=|x2|=x2,OC=3(m+1),
∵OA2+OB2=2OC+1,x12+x22=6(m+1)+1,
∴(x1+x22-2x1x2=6(m+1)+1,
即(m-2)2+6(m+1)=6(m+1)+1,
得:m1=3,m2=1,
∵x1<x2,|x1|>|x2|,
∴x1<x2=m-2<0,
∴m=1.
∴函数的解析式为y=-x2-x+6

(2)存在与抛物线只有一个公共点C的直线.
C点的坐标为(0,6),
①当直线过C(0,6)且与x轴垂直时,直线也抛物线只有一个公共点,
∴直线x=0.
②过C点的直线y=kx+6,与抛物线y=x2-x+6只有一个公共点C,
,只有一个实数解.
∴x2-(k+1)x=0,
又∵△=0,
∴(k+1)2=0,
∴k=-1,
∴y=-x+6.
∴符合条件的直线的表达式为y=-x+6或x=0.
点评:本题主要考查了一元二次方程根与系数的关系、二次函数解析式的确定以及函数图象交点等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•武汉)已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省武汉市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

同步练习册答案