【题目】如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为( )
A.( ,n)
B.(m,n)
C.(m, )
D.( )
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E.
(1)求证:DA=DE;
(2)若AD=2,BC=6,求AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD被DE所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角;
(2)在(1)中,如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:
因为∠5=∠1( ),
∠5=∠3( ),
所以∠1=∠3( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)与y轴交于点C(0,2),抛物线的对称轴交x轴于点D.
(1)求抛物线的表达式;
(2)在抛物线的对称轴是否存在点P,使△PCD是以CD为腰的等腰三角形,如果存在,求出P点的坐标,若不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?并求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设点A(x1 , y1)和B(x2 , y2)是反比例函数y= 图象上的两个点,当x1<x2<0时,y1<y2 , 则一次函数y=﹣2x+k的图象不经过的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条南北方向的公路上,有一辆出租车停在A地,乘车的第一位客人向南走3千米下车;该车继续向南开,又走了2千米后,上来第二位客人,第二位客人乘车向北走7千米下车,此时恰好有第三位客人上车,先向北走3千米,又调头向南走,结果下车时出租车恰好到了A地.
(1)如果以A地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位客人和第二位客人下车的位置;
(2)第三位客人乘车走了多少千米?
(3)规定出租车的收费标准是4千米内付7元,超过4千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|
当A、B两点都不在原点时,
(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|
(3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|
综上,数轴上A、B两点的距离|AB|=|a﹣b|
回答下列问题:
(1)数轴上表示﹣2和﹣5两点之间的距离是多少;
(2)数轴上表示x和﹣1的两点A、B之间的距离是|x+1|,如果|AB|=2,那么x为多少;
(3)当代数式|x+1|+|x﹣2|取最小值时,写出相应的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
(1)20箱橘子中,最重的一箱比最轻的一箱多重多少干克?
(2)与标准重量比较,20箱橘子总计超过或不足多少千克?
(3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com