【题目】如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为( )
A.4B.C.2
D.2
+2
【答案】C
【解析】
作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.
解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.
当y=0时,﹣2x+4=0,解得:x=2,
∴点A的坐标为(2,0).
∵点C是OA的中点,
∴OC=1,点C的坐标为(1,0).
当x=1时,y=﹣2x+4=2,
∴CD=2.
∵点C,C′关于y轴对称,
∴CC′=2OC=2,PC=PC′,
∴PC+PD=PC′+PD=C′D=.
故选:C.
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,为
轴负半轴上的点,
为
轴负半轴上的点.
(1)如图1,以点为顶点、
为腰在第三象限作等腰
,若
,
,试求
点的坐标;
(2)如图,若点
的坐标为
,点
的坐标为
,点
的纵坐标为
,以
为顶点,
为腰作等腰
.试问:当
点沿
轴负半轴向下运动且其他条件都不变时,整式
的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图,
为
轴负半轴上的一点,且
,
于点
,以
为边作等边
,连接
交
于点
,试探索:在线段
、
和
中,哪条线段等于
与
的差的一半?请你写出这个等量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3ax2+2bx+c,
(1)若a=3k,b=5k,c=k+1,试说明此类函数图象都具有的性质;
(2)若a=, c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是8×8的标准点阵图,直线l、m互相垂直,已知△ABC.
(1)写出△ABC的形状;
(2)分别画出△ABC关于直线l、m对称的△A1B1C1,△A2B2C2,再画出△A1B1C1关于直线m对称的△A3B3C3
(3)△A2B2C2与△A3B3C3关于哪条直线对称? (填“直线l、m”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M.
(1)求证:EF=AC.
(2)连接AM,若∠BAC=45°,AM+DM=15,BE=9,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在正方形ABCD边AD上,连接PB,过点B作一条射线与边DC的延长线交于点 Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ,若PQ=PB+PD+3,则△PAB的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:根据《中国铁路中长期发展规划》,预计到2020年底,我国建设城际轨道交通的公里数是客运专线的2倍。其中建设城际轨道交通约投入8000亿元,客运专线约投入3500亿元。据了解,建设每公里城际轨道交通与客运专线共需1.5亿元。预计到2020年底,我国将建设城际轨道交通和客运专线分别约多少公里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.
(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;
(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com