【题目】如图,在平面直角坐标系中,点A(4,0),B(0,2),反比例函数的图象经过矩形ABCD的顶点C,且交边AD于点E,若E为AD的中点,则k的值为__________.
【答案】
【解析】
设法表示点C、E的坐标,通过辅助线,构造相似三角形,设合适未知数,表示出点C、E的坐标,再依据都在反比例函数的图象上,建立方程解出未知数,确定点的坐标,进而确定k的值.
解:过点C,E分别作x轴、y轴的垂线,垂足为M、N,如图:
∵ABCD是矩形,
∴∠ABC=∠BAC=90°,
∴∠ABO+∠BAO=∠ABO+∠CBM=90°,
∴∠BAO=∠CBM,
∵∠AOB=∠BMC=90°,
∴△AOB∽△BMC,
∴===,
设CM=a,则BM=2a,
∴C(a,2a+2),
同理可得:E(4+a,a)
∵点C、E在反比例函数的图象上,
∴a(2a+2)=a(4+a)
∴a1=,a2=0(舍去),
∴点E的坐标为:(,),
∴k=×=;
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,某商品每天的销售利润(元)与销售价(元)之间满足函数,其图象与轴交于点,点在该图象上,点,的坐标见图所示.
(1)求出这个函数的解析式;
(2)销售价为多少元时,该商品每天的销售利润最大?最大利润为多少元?
(3)该种商品每天的销售利润不低于16元时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,BF交AC于G,连接CF.
(1)求证:△AEF≌△DEB;
(2)若∠BAC=90°,①试判断四边形ADCF的形状,并证明你的结论;
②若AB=8,BD=5,直接写出线段AG的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知AC⊥直线l,垂足为C.请用直尺(不含刻度)和圆规在直线l上求作一点P(不与点C重合),使PA平分∠BPC;
(2)如图2,在(1)的条件下,若,AC=,作BD⊥直线l,垂足为D,则BD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现在,步行运动深受广大健身爱好者的喜爱. 通过“微信运动”可以查询微信好友当天的行走步数.实验中学张老师根据该校名教师某日“微信运动”中的行走步数,绘制成如下两张统计表(不完整).
步数 | 频数 | 频率 |
0.2 | ||
19 | 0.38 | |
0.3 | ||
4 | ||
2 | 0.04 |
(1)写出左表中、、的值,并补全条形统计图;
(2)实验中学所在的某县有名教师,用张老师调查的样本数据估计该县当天行走步数不少于步的教师有多少人?
(3)在该校名教师中,随机选取当天行走步数不少于步的名教师参加“我运动,我健康”的征文活动,求选中的名教师的行走步数都不小于步的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的顶点在抛物线上,将绕点顺时针旋转得到,现将抛物线沿轴向上平移个单位,使得抛物线与边只有一个公共点,则的取值范围为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于新冠状病毒疫情的影响,城际公交车正常行驶时间与行驶道路受到限制.如图,是某企业职工上班时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )
A.该企业总人数为50人B.骑车人数占总人数的20%
C.步行人数为30人D.乘车人数是骑车人数的2.5倍
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com