精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且

(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.

【答案】
(1)

解:由题意可知P(4,0),Q(4, ),丨QF丨= +

,则 + = × ,解得:p=2,

∴抛物线x2=4y


(2)

解:设l:y=kx+1,A(x1,y1),B(x2,y2),

联立 ,整理得:x2﹣4kx﹣4=0,

则x1x2=﹣4,

由y= x2,求导y′=

直线MA:y﹣ = (x﹣x1),即y= x﹣

同理求得MD:y= x﹣

,解得: ,则M(2k,﹣1),

∴M到l的距离d= =2

∴△ABM与△CDM的面积之积S△ABMS△CDM= 丨AB丨丨CD丨d2

= (丨AF丨﹣1)(丨DF丨﹣1)d2

= y1y2d2= ×d2

=1+k2≥1,

当且仅当k=0时取等号,

当k=0时,△ABM与△CDM的面积之积的最小值1


【解析】(1)求得P和Q点坐标,求得丨QF丨,由题意可知, + = × 即可求得p的值,求得椭圆方程;(2)设直线方程,代入抛物线方程,由韦达定理x1x2=﹣4,求导,根据导数的几何意义,求得切线方程,联立求得M点坐标,根据点到直线距离公式,求得M到l的距离,利用三角形的面积公式,即可求得△ABM与△CDM的面积之积的最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当 取得最大值时, 的最大值为(
A.0
B.1
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边ADE

1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;

2)如图2,在点D从点B开始移动至点C的过程中,以等边ADE的边ADDE为边作ADEF

ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;

若点MNP分别为AEADDE上动点,直接写出MN+MP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( )

A. 2 B. 3 C. 2或3 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则 的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足f(x+1)=f(﹣x),当x∈(0, ]时,f(x)= (1﹣x),则f(x)在区间(1, )内是(
A.减函数且f(x)>0
B.减函数且f(x)<0
C.增函数且f(x)>0
D.增函数且f(x)<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an}满足 ,(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,数列{bn}的前n项和Sn , 求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知向量 ,向量 如图表示,则(
A.?λ>0,使得
B.?λ>0,使得< >=60°
C.?λ<0,使得< >=30°
D.?λ>0,使得 为不为0的常数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.

(1)当点D′恰好落在EF边上时,求旋转角α的值;
(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;

(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.

查看答案和解析>>

同步练习册答案