精英家教网 > 初中数学 > 题目详情
7.如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是2.4.

分析 利用勾股定理的逆定理,由三角形的三边长可得△ABC为Rt△,根据90°的圆周角所对的弦为直径得出EF为圆的直径,又圆与AB相切,设切点为D,可知当CD⊥AB时,根据点到直线的垂线段最短可得CD最短,此时EF亦最小,由三角形ABC为直角三角形,根据直角三角形的三边长,利用面积法即可求出CD的长,即为EF的最小值.

解答 解:结合题意得,AB2=AC2+BC2
∴△ABC为RT△,即∠C=90°,可知EF为圆的直径,
设圆与AB的切点为D,连接CD,
当CD⊥AB,即CD是圆的直径的时候,EF长度最小,
则EF的最小值是$\frac{3×4}{5}$=2.4.
故答案为:2.4.

点评 此题考查了圆周角定理,勾股定理的逆定理,垂线段最短以及切线的性质,解题的关键是根据题意得出EF为圆的直径,故当CD是直径时EF最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.因式分解:(x2-2x)2-11(x2-2x)+24=(x-3)(x+1)(x-4)(x+2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,acm为半径画⊙B,使⊙A和⊙B相切,则a=5或9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB边上一点. 
(1)求证:△ACE≌△BCD;
(2)求证:△ADE是直角三角形;
(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,⊙O的直径CD过弦AB的中点E,且CE=2,DE=8,则AB的长为(  )
A.9B.8C.6D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.方程:$\frac{2}{x}$+$\frac{3}{{x}^{2}}$=1的解是(  )
A.x=-1B.x=3C.x=-1或x=3D.x=1或x=-312

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(  )
A.30°B.40°C.50°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)计算:$\sqrt{8}$+${(\frac{1}{2})^{-2}}$+(-1)0-2sin45°;
(2)解方程:x2-2x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,连结BD,CD,抛物线的对称轴与x轴交于点E.
(1)点B的坐标为(3,0),点D的坐标为(1,-4),∠CDE的度数为45°;
(2)点M是折线B-D-C上的一个动点,过点M作MN⊥DE,垂足为N,连接BM、BN.如果M点的横坐标为m,△BMN的面积为S,求S与m之间的函数关系式,并求出S的最大值;
(3)若抛物线上有一点P,作PQ⊥CD,交射线CD于点Q,使∠CPQ=∠BDE,请直接写出点P的坐标.

查看答案和解析>>

同步练习册答案