精英家教网 > 初中数学 > 题目详情
如图,面积为39的直角梯形OABC的直角顶点C在x轴上,点C坐标为(,0),AB=,点D是AB边上的一点,且AD:BD=2:3.有一45°的角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点D、E、F按顺时针排列),连接DF.设CE=x,OF=y.
(1)求点D的坐标及∠AOC的度数;
(2)若点E在x轴正半轴上运动,求y与x的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.
【答案】分析:(1)作AH⊥OC于H,就可以得出四边形AHCB是矩形,由矩形的性质就可以得出AB=CH,AH=BC,设BC=x,由梯形的面积公式建立方程就可以求出BC的值,就可以求出OH的值,就可以得出∠AOH的值,再根据比例问题就可以求出AD、DB的值就可以得出D的坐标;
(2)分为两种情况,当E在OC上时,连接CD,通过证明△OEF∽△CDE,由相似三角形的性质可以得出结论,当E在C的右侧上时,如图3,连接CD,证明△OEF∽△CDE,由相似三角形的性质可以得出结论;
(3)当E在OC上时,如图4,当EM=ED,在△OEF和△CDE中,由△OEF≌△CDE可以得出结论,若DF=DE,则∠EDF=Rt∠,如图5,作EG⊥AB于G,FH⊥AB交BA的延长线于点H,由△DFH≌△EDG可以得出结论,FD=FE,则∠DFE=Rt∠,如图过F作FN⊥OC于点N交直线AB于点H,由△HDF≌△NFE可以得出结论,当E在C的右侧时,如图7,∠DEM=45°,∠DFE<45°,∠FDE>45°△DEM不可能是等腰三角形,当E在O的左侧时,如图8,由点D、E、F要按顺时针排列,E在O的左侧不存在.故得出结论.
解答:解:(1)作AH⊥OC于H,设BC=x,
∴四边形AHCB是矩形,∠AHO=90°,
∴AH=BC,AB=HC.
∵AB=
∴HC=5,.
∵C坐标为(,0),
∴OC=8
∴OH=3

∴x=3
∴AH=BC=3
∴OH=AH,
∴∠AOH=45°.
∵AD:BD=2:3.设每份为a,则AD=2a,BD=3a,
∴2a+3a=5
∴a=
∴AD=2,BD=3
∴D(8-3,3

答:D(5,3),∠AOC=45°;

(2)当E在OC上时,如图2,连接CD,
∵∠DEF=45°,
∴∠OEF+∠DEC=135°.
∵∠AOE=45°,
∴∠OFE+∠OEF=135°,
∴∠OFE=∠DEC.
∵DB=CB=3
∴∠DCB=∠BDC=45°,CD=6.
∴∠DCO=45°,
∴∠FOE=∠ECD
∴△OEF∽△CDE



当E在C的右侧上时,如图3,连接CD,
∵AB∥OC,
∴∠BDC=∠CEO.
∵∠BDC=∠DEF=45°,
∴∠BDC-∠BDC=∠DEF-∠DEO
即∠CDE=∠OEF,
∵∠FOE=∠DCE=135°,
∴△OEF∽△CDE



(3)当E在OC上时,如图4,
若EF=ED,
∵在△OEF和△CDE中,

∴△OEF≌△CDE(AAS)
∴OE=CD=6,
∴OF=CE=,作FN⊥OC于点N
∴ON=FN=8-3
∴F
若DF=DE,则∠EDF=Rt∠,如图5,
作EG⊥AB于G,FH⊥AB交BA的延长线于点H,
∴∠FHA=∠EGD=90°.
∵∠FDH+∠EDG=90°,∠EDG+∠DEG=90°,
∴∠FDH=∠DEG.
∵在△DFH和△EDG中,

∴△DFH≌△EDG(AAS),

∴HA=HF=


若FD=FE,则∠DFE=Rt∠,如图过F作FN⊥OC于点N交直线
AB于点H,
∴∠AHF=∠FNE=90°.
∵∠DFE=90°,
∴∠HFD=∠NEF.
∵在△HDF和△NFE中

∴△HDF≌△NFE(AAS),
∴HD=FN.
设ON=x,则FN=x,FH=,DH=
∴x=

∴F
当E在C的右侧时,如图7,∠DEM=45°,∠DFE<45°,∠FDE>45°
∴△DEM不可能是等腰三角形
当E在O的左侧时,如图8,
∵点D、E、F按顺时针排列,
∴E在O的左侧不存在.
综合得:F1,F2(2,2),F3
点评:本题考查了直角梯形的性质的运用,等腰直角三角形的性质的运用,梯形的面积公式的运用,相似三角形的判定及性质的运用,全等三角形的判定及性质的运用,分类讨论思想的运用,解答本题是认真审题,全面考虑是关键.要求学生要有较强的分析能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•广陵区二模)如图,面积为39的直角梯形OABC的直角顶点C在x轴上,点C坐标为(8
2
,0),AB=5
2
,点D是AB边上的一点,且AD:BD=2:3.有一45°的角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点D、E、F按顺时针排列),连接DF.设CE=x,OF=y.
(1)求点D的坐标及∠AOC的度数;
(2)若点E在x轴正半轴上运动,求y与x的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,面积为39的直角梯形OABC的直角顶点C轴上,点C坐标为AB=,点DAB边上的一点,且ADBD=2︰3.有一45°的角的顶点E轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点DEF按顺时针排列),连结DF.设CE=OF=.

(1)求点D的坐标及的度数;

(2)若点E轴正半轴上运动,求的函数关系式;

(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省扬州市广陵区中考二模数学卷(带解析) 题型:解答题

如图,面积为39的直角梯形OABC的直角顶点C轴上,点C坐标为AB=,点DAB边上的一点,且ADBD=2︰3.有一45°的角的顶点E轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点DEF按顺时针排列),连结DF.设CE=OF=.

(1)求点D的坐标及的度数;
(2)若点E轴正半轴上运动,求的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省扬州市广陵区中考二模数学卷(解析版) 题型:解答题

如图,面积为39的直角梯形OABC的直角顶点C轴上,点C坐标为AB=,点DAB边上的一点,且ADBD=2︰3.有一45°的角的顶点E轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点DEF按顺时针排列),连结DF.设CE=OF=.

(1)求点D的坐标及的度数;

(2)若点E轴正半轴上运动,求的函数关系式;

(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案