精英家教网 > 初中数学 > 题目详情
如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
m
x
(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0);

(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,
-k+b=0
b=1
,解得
k=1
b=1

∴一次函数的解析式为y=x+1.
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,
∴点C的坐标为(1,2),
又∵点C在反比例函数y=
m
x
(m≠0)的图象上,
∴m=2;
∴反比例函数的解析式为y=
2
x
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
的图象经过点A(2,m),过点A作AB垂直y轴于点B,△AOB的面积为5.
(1)求k和m的值;
(2)已知点C(-5,-2)在反比例函数图象上,直线AC交x轴于点M,求△AOM的面积;
(3)过点C作CD⊥x轴于点D,连接BD,试证明四边形ABDC是梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,正比例函数y=kx与反比例函数y=
m
x
的图象交于点A(-3,2).
(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AC与双曲线y=
k
x
在第四象限交于点A(x0,y0),交x轴于点C,且AO=
13
点A的横坐标为2,过点A作AB⊥x轴于点B,且S△ABC:S△ABO=4:1.
(1)求k的值及直线AC的解析式;
(2)在第四象限内,双曲线y=
k
x
上有一动点D(m,n),设△BCD的面积为S,求S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知矩形AOBC,AO=2,BO=3,函数y=
k
x
的图象经过点C.
(1)直接写出点C的坐标;
(2)将矩形AOBC分别沿直线AC,BC翻折,所得到的矩形分别与函数y=
k
x
(x>0)交于点E,F求线段EF.
(3)若点P、Q分别在函数y=
k
x
图象的两个分支上,请直接写出线段P、Q两点的最短距离(不需证明);并利用图象,求当
k
x
≤x
时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线y=
k
x
(k>0)上,则点D的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,正方形ABCD的边BC在x轴上,点E是对角线AC,BD的交点,函数y=
3
x
的图象经过A,E两点,则△OAE的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例函数y=
k
x
(x<0)的图象经过点E.
(1)求k的值;
(2)判断线段BE的中点M是否在反比例函数y=
k
x
(x<0)的图象上,请说明理由.

查看答案和解析>>

同步练习册答案