A. | 4cm | B. | 8cm | C. | 16cm | D. | 32cm |
分析 连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形内角和定理求出∠ACE及∠CEA的度数,由直角三角形中30°的角所对的直角边是斜边的一半即可解答.
解答 解:连接CE,
∵Rt△ABC中,∠A=90°,∠BCA=75°,
∴∠B=90°-∠BCA=90°-75°=15°,
∵DE垂直平分BC,
∴∠BCE=∠B=15°,BE=CE,
∴∠ACE=∠BCA-∠BCE=75°-15°=60°,
∵Rt△AEC中,∠ACE=∠BCA=60°,AC=8cm,
∴∠AEC=90°-∠ACE=90°-60°=30°,
∴CE=2AC=16cm,
∵BE=CE,
∴BE=16cm.
故选C.
点评 本题考查的是直角三角形及线段垂直平分线的性质,根据题意作出辅助线是解答此题的关键.
科目:初中数学 来源: 题型:选择题
尺码 | 22 | 22.5 | 23 | 23.5 | 24 |
销售量/双 | 1 | 2 | 5 | 11 | 7 |
A. | 平均数 | B. | 众数 | C. | 中位数 | D. | 平均数与中位数 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x}{4}$-$\frac{3}{4}$ | B. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x}{4}$+$\frac{3}{4}$ | C. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x-3}{4}$-$\frac{7}{4}$ | D. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x-3}{4}$+$\frac{7}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com