精英家教网 > 初中数学 > 题目详情
图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.
(1)你认为图1的长方形面积等于
4ab
4ab

(2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中 阴影部分的面积.           
方法1:
(a+b)2-4ab
(a+b)2-4ab
;方法2:
(a-b)2
(a-b)2

(3)观察图2直接写出代数式(a+b)2、(a-b)2、ab之间的等量关系
(a+b)2-4ab=(a-b)2
(a+b)2-4ab=(a-b)2

(4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示).
分析:(1)根据长方形的面积公式计算图1的长方形面积;
(2)图2中阴影部分的面积可用边长为(a+b)的正方形的面积减去4个小长方形的面积;图2中阴影部分本身就是边长为(a-b)的正方形,可利用正方形面积公式直接计算;
(3)利用(2)中阴影部分的面积两种计算方法的结果相等即可得到所求的等量关系;
(4)根据图形分别表示出两块阴影部分的边长,然后计算周长.
解答:解:(1)长方形面积=2a•2b=4ab;
(2)方法1:S阴影部分=(a+b)2-4ab;
方法2:S阴影部分=(a-b)2
(3)根阴影部分的面相等得到(a+b)2-4ab=(a-b)2
(4)两块阴影部分的周长和=2a+2(n-2b)+2×2b+2(n-a)=4n.
故答案为4ab;(a+b)2-4ab;S阴影部分=(a-b)2
点评:本题考查了完全平方公式的几何背景:运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积.
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a-b)2,ab之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.
(1)求出图1的长方形面积;
(2)将四块小长方形拼成一个图2的正方形.利用阴影部分面积的不同表示方法,直接写出代数式(a+b)2、(a-b)2、ab之间的等量关系;
(3)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是
a-b
a-b

(2)用两种不同的方法求图中阴影部分的面积.
【方法1】S阴影=
(a-b)2
(a-b)2

【方法2】S阴影=
(a+b)2-4ab
(a+b)2-4ab

(3)观察如图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:
若x+y=10,xy=16,求x-y的值.

查看答案和解析>>

科目:初中数学 来源:江西省期末题 题型:解答题

如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.
(1)图2中的空白部分的正方形的边长是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求图2中空白部分的正方形的面积.
(3)观察图2,用一个等式表示下列三个整式:(a+b)2,(a﹣b)2,ab之间的数量关系.
                                                  
                                                   图1                                                图2

查看答案和解析>>

同步练习册答案