精英家教网 > 初中数学 > 题目详情
如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

【答案】分析:(1)由OA、OB长是关于x的方程x2-mx+12=0的两实根,得OA•OB=12,而OA=4,所以OB=3,又由于OB为⊙M的直径,即可得到⊙M的半径.
(2)连MD,OC,由OB为⊙M的直径,得∠OCB=90°,则∠OCD=90°,由于D为OA的中点,所以CD=OA=OD,因此可证明△MCD≌△MOD,所以∠MCD=∠MOD=90°,即CD是⊙M的切线.
解答:(1)解:∵OA、OB长是关于x的方程x2-mx+12=0的两实根,
∴OA•OB=12,而OA=4,
∴OB=3,
又∵OB为⊙M的直径,
∴⊙M的半径为

(2)证明:连MD,OC,如图,
∵OB为⊙M的直径,
∴∠OCB=90°,
又∵D为OA的中点,
∴CD=OA=OD,
而MC=MO,MD公共,
∴△MCD≌△MOD,
∴∠MCD=∠MOD=90°,
所以CD是⊙M的切线.
点评:本题考查了圆的切线的判定方法.经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.同时考查了直径所对的圆周角为90度,直角三角形斜边上的中线等于斜边的一半以及三角形全等的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的精英家教网方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知直线AB与CD相交于点O,OB平分∠EOD,∠1+∠2=90°,
问:图中的线是否存在互相垂直的关系,若有,请写出哪些线互相垂直,并说明理由;若无,直接说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为-3,tan∠BAO=
23

(1)求反比例函数与一次函数的解析式;
(2)求△COD的面积;
(3)若一次函数的值大于反比例函数的值,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与CD相交于点O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度数;
(2)写出∠EOF的余角和补角.

查看答案和解析>>

同步练习册答案