精英家教网 > 初中数学 > 题目详情

【题目】国学经典进校园,传统文化润心灵,某校开设了“围棋入门”、“诗歌汉字”、“翰墨飘香”、“史学经典”四门拓展课(每位学生必须且只选其中一门).

(1)学校对八年级部分学生进行选课调查,

得到如图所示的统计图,请估计该校八年级420名学生选“诗歌汉字”的人数.

(2)“翰墨飘香”书画社的甲、乙、丙三人的书法水平相当,学校决定从这三名同学中任选两名参加市书法比赛,求甲和乙被选中的概率.(要求列表或画树状图)

【答案】(1)175;(2) .

【解析】(1)根据选诗歌汉字的圆心角的度数求出所占的百分比,用总人数乘以所占的百分比即可求出选诗歌汉字的人数.

画出树状图写出所有的情况,根据概率的求法计算概率.

(1)(人)

(2)画树状图得:

∵由上图可知,共有6种等可能的结果,其中恰好选中甲、乙两位同学的结果有2

所以P(恰好选中甲、乙两位同学)=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?( )

A. 112 B. 121 C. 134 D. 143

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AMBN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.

(1)求证:DA=DE;

(2)若AB=6,CD=4,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题7分)如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:AB=DE;②∠A=D;③∠ACB=DFE中选择一个合适的条件,使ABED成立,并给出证明.

(1)选择的条件是 (填序号)

(2)证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.

(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;

(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;

(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老张装修完新房,元旦期间到商场购买冰箱、电视机和洗衣机三件家电,刚好该商场推出新年优惠活动,具体优惠情况如下表:

购物金额(原价)

折扣优惠

不超过3000元的部分

无折扣优惠

超过3000元但不超过10000元部分

九五折(

超过10000元的部分

九折

付款时,还可以享受单笔消费满2000元立减160元优惠

如:买原价5000元的商品,实际花费:

(元)

1)已知老张购买的这三件家电原价合计为11500元,如果一次性支付,请求出他的实际花费;

2)如果在该商场购买一件原价为元的商品().请用含的代数式表示实际花费;

3)付款前,老张突然想到:如果一次性支付,虽然折扣优惠更大,却只能享受一次立减160元优惠,如果将这三件家电分开支付或者两件合并支付.另一件单独支付,就可以享受多次立减160元优惠,已知老张购买的冰箱原价4800元,电视机原价4600元,洗衣机原价2100元,请你通过计算帮老张设计出最优惠的支付方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于( )

A. 4 cm B. 8 cm C. 6 cm D. 4 cm8 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:EFAD,∠1=2,∠B=55°,求∠BDG的大小.

请同学们在下面的横线上把解答过程补充完整:

解:∵ EF//AD,   (已知)

∴ ∠2=3 (           )

又∵ ∠1=2 (已知)

∴ ∠1=3 (等量代换)

∴        (内错角相等,两直线平行)

∴ ∠B+∠BDG=180° (            )

∵ ∠B=55°,  (已知)

∴ ∠BDG =    

查看答案和解析>>

同步练习册答案