【题目】如图,为的直角边上一点,以为半径的与斜边相切于点,交于点.已知,.
(1)求的长;
(2)求图中阴影部分的面积.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,).
(1)求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是万元,收购成本为万元,求和的值;
(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.
①分别求出当和时,与的函数关系式;
②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是正方形,点P,Q在直线BC上,且AP∥DQ,过点Q作QO⊥BD,垂足为点O,连接OA,OP.
(1)如图,点P在线段BC上,
①求证:四边形APQD是平行四边形;
②判断OA,OP之间的数量关系和位置关系,并加以证明;
(2)若正方形ABCD的边长为2,直接写出BP=1时,△OBP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com