精英家教网 > 初中数学 > 题目详情
6.若|2x+y-5|+$\sqrt{x-2y}$=0,则x+y的值为3.

分析 利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.

解答 解:∵|2x+y-5|+$\sqrt{x-2y}$=0,
∴$\left\{\begin{array}{l}{2x+y=5①}\\{x-2y=0②}\end{array}\right.$,
①×2+②得:5x=10,即x=2,
把x=2代入②得:y=1,
则x+y=2+1=3,
故答案为:3

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:1100<p<1200,已知有关数据如图所示,设生产甲种产品x件,解答下列问题:
产品每件产品的产值
45万元
75万元
(1)求P与x的函数关系式?
(2)该公司明年应该怎样安排甲、乙两种产品的生产量?
(3)如果甲种产品每件的成本为10万元,乙种产品每件的成本为15万元生产这两种产品的总成本为y万元,请写出y与x的函数关系式,并说明x取何值时能使总成本最低?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,已知⊙O的半径为1,∠NAM的正切值为$\frac{\sqrt{2}}{4}$,AM是⊙O的切线,⊙O从点A开始沿射线AM的方向滚动,其接触点为点A′(即点A′始终是切点).
(1)sin∠∠NAM=$\frac{1}{3}$,cos∠NAM=$\frac{2\sqrt{2}}{3}$;
(2)①如图1,当⊙O的初始位置时,求圆心O到射线AN的距离;
②如图②,当⊙O的圆心在射线AN上时,AA′=2$\sqrt{2}$;
(3)在⊙O的滚动过程,设点A′与点A之间距离为x,圆心O到射线AN的距离为y,求y与x之间的关系,并探究当x分别在什么范围内时,⊙O与射线AN相交、相切、相离?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算:(1000)0-2-1=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.
(1)写出这个四边形的一条性质并证明你的结论.
(2)若BD=BC,证明:$\frac{BD}{AC}=sin∠BCD$.
(3)①若AB=BC=4,AD+DC=6,求$\frac{BD}{AC}$的值.
        ②若BD=CD,AB=6,BC=8,求sin∠BCD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,矩形OABC,点A(0,2),C(5,0),D(-2,1),⊙D的半径是1.
(1)点B的坐标是(5,2);
(2)以垂直于x轴的直线x=a为折痕折叠矩形纸片OABC,边BC的对应边为B1C1.当B1C1与⊙D相切时,求a的值;
(3)点M在边OC上(端点除外),以AM为折痕折叠矩形纸片OABC,边BC的对应边为B2C2
①作⊙D的切线AE,AF,切点分别为E,F,求△AEF的面积;
②当⊙D被四边形AMC2B2部分覆盖时,设直线AB2的解析式是y=kx+2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:$\frac{1}{x+2}$-$\frac{12}{{x}^{3}+8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将?ABCD的边DC延长到点E,使CE=DC,连结AE,交BC于点F.
(1)求证:BF=$\frac{1}{2}$BC;
(2)若∠AFC=2∠D,连结AC,BE,求证:四边形ABEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简或计算:
(1)$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{2}{\sqrt{3}-1}$;(2)2$\sqrt{\frac{2}{3}}$•$\sqrt{2}$-$\sqrt{(2-\sqrt{5})^{2}}$+$\frac{1}{\sqrt{5}+2}$;(3)$\frac{\sqrt{9ab}}{a\sqrt{b}+b\sqrt{a}}$;
(4)$\frac{m}{3}$$\sqrt{9m}$+10m$\sqrt{\frac{m}{25}}$-2m2$\sqrt{\frac{1}{m}}$;(5)$\sqrt{9-2\sqrt{14}}$;(6)$\sqrt{27+10\sqrt{2}}$+$\sqrt{27-10\sqrt{2}}$.

查看答案和解析>>

同步练习册答案