【题目】如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于第一、三象限内的,两点,与轴交于点,过点作轴,垂足为点,,,点的纵坐标为.
(1)求点的坐标;
(2)求该反比例函数和一次函数的解析式;
(3)连接,求四边形的面积.
【答案】(1)点的坐标为;(2),;(3)8
【解析】
(1)在中利用勾股定理可求得OM,BM的长,进而得出点B的坐标;
(2)根据题意得出B点坐标,可得出反比例函数解析式,把点A的纵坐标代入反比例函数解析式可得出点A的横坐标,再利用待定系数法得出一次函数解析式;
(3)先判定四边形MBOC为平行四边形,再利用面积公式求解即可.
解:(1)在中,,,
,解得,,
点的坐标为;
(2)反比例函数的图像经过点,
,该反比例函数的解析式为;
反比例函数经过点,而点的纵坐标为,
,解得,点坐标;
将点和的坐标代入一次函数的解析式中,得
,解得,
一次函数的解析式为;
(3)一次函数与轴交于点,当时,,
∴C点的坐标为,,
,,
又轴,,
四边形为平行四边形,
.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.
(1)求证:PD∥CB;
(2)若AB=26,EB=8,求CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:[x]表示不大于x 的最整数,(x) 表示不小于x的最小整数,[x) 表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2,则下列说法正确的是__________(写出所有正确说法).
①当x=1.7时,[x]+(x)+[x)=6;
②当x=-2.1时,[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当-1<x<1时, 函数y=[x]+(x)+x 的图像y=4x 的图像有两个交点.
【答案】②③
【解析】分析:(1)根据题目中给的计算方法代入计算后判定即可;(2)根据题目中给的计算方法代入计算后判定即可;(3)根据题目中给的计算方法代入计算后判定即可;(4)结合x的取值范围,分类讨论,利用题目中给出的方法计算后判定即可.
详解:
①当x=1.7时,
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;
②当x=﹣2.1时,
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;
③当1<x<1.5时,
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正确;
④∵﹣1<x<1时,
∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当x=0时,y=[x]+(x)+x=0+0+0=0,
当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,
当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,
∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,
故答案为:②③.
点睛:本题是阅读理解题,前三问比较容易判定,根据题目所给的方法判定即可;第四问较难,结合x的取值范围分情况讨论即可.
【题型】填空题
【结束】
19
【题目】先化简再求值: ,其中, .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年11月5日,第二届中国国际进口博览会(The 2nd China International lmport Expo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.
(1)求小滕选择.中国馆的概率;
(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.
(1)求证;
(2)当时,求AE的长;
(3)当时,求AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且,连接AB,BC,CD.
(1)求证:△CDE≌△ABC;
(2)填空:若AC为⊙O的直径,则当△ACE的形状为 时,四边形ABCD为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
A. ①③B. ②④C. ①②④D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com