【题目】在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点
A(0,4),点B是轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 ▲ ;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示.)
【答案】3或4;6n-3
【解析】
分类归纳(图形的变化类),点的坐标,矩形的性质。
根据题意画出图形,再找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系即可求出答案:
如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1),
(1,2),(2,1),共三个点,∴当m=3时,点B的横坐标的所有可能值是3或4。
当点B的横坐标为4n(n为正整数)时,
∵以OB为长OA为宽的矩形内(不包括边界)的整点个数为(4n-1)×3="12" n-3,对角线AB上的整点个数总为3,
∴△AOB内部(不包括边界)的整点个数m=(12 n-3-3)÷2=6n-3。
科目:初中数学 来源: 题型:
【题目】如图①②,的两边分别平行.
(1)在图①中,与有什么数量关系?为什么?
(2)在图②中,与有什么数量关系?为什么?
(3)由(1)(2)你能得出什么结论?用一句话概括你得到的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,边长为1的正方形网格中,△ABC的三个顶点A、B、C都在格点上.
(1)作关于△ABC关于x轴的对称图形△DEF,(其中A、B、C的对称点分别是D、E、F),并写出点D坐标;
(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点 A(0,4)在 y 轴上,点 B(b,0)是 x 轴上一动点,且 4< b <4,△ABC 是以 AB 为直角边,B 为直角顶点的等腰直角三角形.
(1)求点 C 的坐标(用含 b 的式子表示);
(2)以 x 轴为对称轴,作点 C 的对称点 C 连接 BC、AC,请把图形补充完整,并求出△ABC的面积(用含 b 的式子表示);
(3)点 B 在运动过程中, OAC 的度数是否发生变化,若变化请说明理由;若不变化,请直接 写出 OAC 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图1,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图2,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 , 求线段EF1长度的最大值与最小值的差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①在△ABC中,点D是BC边上的一点,将△ABD沿AD折叠,得到△AED,AE与BC交于点F.已知∠B=50°,∠BAD=15°,求∠AFC的度数.
(2)如图②,将△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠1、∠2与∠A之间存在一定的数量关系,请判断它们之间的关系,并说明理由.
(3)如图③,将△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,此时∠1、∠2与∠A之间也存在一定的数量关系,请直接写出它们之间的关系,无需说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用两个边长为15的小正方形拼成一个大的正方形,
(1)求大正方形的边长?
(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com