精英家教网 > 初中数学 > 题目详情
28、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.
分析:(1)根据正方形的性质求证出满足△BCE≌△DCG的条件,得到△BCE≌△DCG,从而求出BE=DG;
(2)将Rt△BCE绕点C顺时针旋转90°,可与Rt△DCG完全重合.
解答:解:(1)BE=DG.
证明:在△BCE和△DCG中,
∵四边形ABCD和四边形ECGF都是正方形,
∴BC=DC,EC=GC,
∴∠BCE=∠DCG=90°,
∴△BCE≌△DCG,
∴BE=DG;

(2)由(1)证明过程知:
存在,是Rt△BCE和Rt△DCG,
将Rt△BCE绕点C顺时针旋转90°,可与Rt△DCG完全重合.
(或将Rt△DCG绕点C逆时针旋转90°,可与Rt△BCE完全重合).
点评:此题主要考查了正方形的性质,利用正方形的性质证明三角形全等是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案