【题目】如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P是内切圆的圆心.将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2019次滚动后,内切圆的圆心的坐标是________.
【答案】
【解析】
由勾股定理得出AB=,求出Rt△OAB内切圆的半径=1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次为一个循环,由2019÷3=673,即可得出结果.
解:∵点A的坐标为(0,4),点B的坐标为(3,0),
∴OA=4,OB=3,
∴AB=,
∴Rt△OAB内切圆的半径=,
∴P的坐标为(1,1),
∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,
∴P3(3+5+4+1,1),即(13,1),每滚动3次为一个循环,
∵2019÷3=673,
∴第2019次滚动后,Rt△OAB内切圆的圆心P2019的横坐标是673×(3+5+4)+1,即P2019的横坐标是8077,
∴P2019的坐标是(8077,1);
故答案为:(8077,1).
科目:初中数学 来源: 题型:
【题目】如图,⊙O中直径AB⊥弦CD于E,点F是的中点,CF交AB于I,连接BD、AC、AD.
(1)求证:BI=BD;
(2)若OI=1,OE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);
(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C (点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)
(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)
(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象经过点.
(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;
(2)已知点,在该二次函数的图象上,求的取值范围;
(3)当时,若该二次函数的图象与直线交于点,,且,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与直线x=2相交于点A,将抛物线y=x2沿线段OA从点O运动到点A,使其顶点始终在线段OA上,抛物线与直线x=2相交于点P,则点P移动的路径长为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.
(1)求口袋里红球的个数;
(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知AB⊥l,DE⊥l,垂足分别为B、E,且C是l上一点,∠ACD=90°,求证:△ABC∽△CED;
(2)如图2,在四边形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com