精英家教网 > 初中数学 > 题目详情
29、如图1,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
(1)探究BM、MN、NC之间的关系,并说明理由;
(2)若△ABC的边长为2,求△AMN的周长;
(3)若点M、N分别是线段AB、CA延长线上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.
分析:(1)延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段,MD=DE,再进一步证明△DMN≌△DEN,进而得到MN=BM+NC.
(2)利用(1)中结论,将△AMN的周长转化为AB、AC的和来解答.
(3)按要求作出图形,先证△BMD≌△CED,再证△MDN≌△EDN(SAS),即可得出结论.
解答:解:(1)MN=BM+NC.理由如下:
延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,BD=CD,∠MBD=∠ECD,CE=BM,
∴△MBD≌△ECD(SAS),
∴MD=DE,
∴△DMN≌△DEN,
∴MN=BM+NC.

(2)利用(1)中的结论得出:
△AMN的周长=AM+MN+AN
=(AM+BM)+(NC+AN)
=2+2=4.

(3)按要求作出图形,(1)中结论不成立,应为MN=NC-BM.
在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠ECD=90°,
又∵CE=BM,BD=CD,
∴△BMD≌△CED(SAS),
∴DE=DM,
又∵ND=ND,∠EDN=∠MDN,MD=ED,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-BM.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为
BC
上一动点,求证:PA=PB+PC.
下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.
证明:在AP上截取AE=CP,连接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圆周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为
BC
上一动点,求证:PA=PC+
2
PB.
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为
BC
上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景  某课外学习小组在一次学习研讨中,得到如下两个命题:
①如图1,O是正三角形ABC的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=120°,则四边形OPBQ的面积等于三角形ABC面积的三分之一.
②如图2,O是正方形ABCD的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=90°,则四边形OPBQ的面积等于正方形ABCD面积的四分之一.
然后运用类比的思想提出了如下的命题:
③如图3,O是正五边形ABCDE的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=72°,则四边形OPBQ的面积等于五边形ABCDE面积的五分之一.
任务要求
(1)请你从①、②、③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
如图4,在正n(n≥3)边形ABCDEF…中,O是中心,∠MON分别与AB、BC交于点P,Q,若∠MON 等于多少度时,则四边形OPBQ的面积等于正n边形ABCDE…面积的n分之一?(不要求证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:PA=PC+
2
PB

(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•婺城区一模)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=
108°
108°
,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是正△ABC内一点,∠AOB=90°,∠BOC=α,将△BOC绕点C顺时针旋转60°得到△AEC,连接OE
(1)求证:△COE是正三角形;
(2)当α为何值时,AC⊥OE,并说明理由;
(3)探究是否存在α的值使得点O到正△ABC三个顶点的距离之比为1:
3
:2
?若存在请直接写出α的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案