分析 以AB所在的直线为x轴,以AB边上的高所在的直线为y轴,建立平面直角坐标系,则BO=AO,再根据勾股定理求出CO的长度,点A、B、C的坐标即可写出.
解答 解:如图,以AB所在的直线为x轴,以AB边上的高所在的直线为y轴,建立平面直角坐标系,
等腰三角形ABC的腰长为5,底长为6,
∴AO=BO=3,
∴点A、B的坐标分别为A(-3,0),B(3,0),
∵CO=$\sqrt{A{C}^{2}-A{O}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴点C的坐标为(0,4).
点评 本题主要考查等腰三角形的性质和勾股定理的运用,建立适当的平面直角坐标系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com