【题目】如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第1个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第2个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.
【答案】
【解析】
首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.
∵在Rt△ABC中,AB=AC=3,
∴∠B=∠C=45°,BC=AB=6,
∵在△ABC内作第一个内接正方形DEFG;
∴EF=EC=DG=BD,
∴DE=BC=2,
∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,
∴,
∴EI=KI=HI,
∵DH=EI,
∴HI=DE=()2﹣1×3,
则第n个内接正方形的边长为:3×()n﹣1.
故第2019个内接正方形的边长为:3×()2018.
故答案是:3×()2018.
科目:初中数学 来源: 题型:
【题目】如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20米/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】合肥百大集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机 | 电冰箱 | |
甲连锁店 | 200 | 170 |
乙连锁店 | 160 | 150 |
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,才能使总利润达到最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数,其中与成反比例与成正比例,函数的自变量的取值范围是,且当或时,的值均为。
请对该函数及其图象进行如下探究:
(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: .
(2)函数图象探宄:①根据解析式,选取适当的自变量,并完成下表:
... | ||||||||||
... |
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.
(3)结合画出的函数图象,解决问题:
①当,,时,函数值分别为,则的大小关系为: (用“”或“”表示)
②若直线与该函数图象有两个交点,则的取值范围是 ,此时,的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.
(1)求传送带AB的长度;
(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41, ≈2.24)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成不完整的条形统计图和扇形统计图.
结合以上信息解答下列问题:
(1)m= .
(2)请补全上面的条形统计图;
(3)在图2中,乒乓球所对应扇形的圆心角= ;
(4)已知该校共有2100名学生,请你估计该校约有多少名学生最喜爱足球活动.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】哈市某中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果外为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若九年级共有600名学生,请你估计九年级学生中体能测试结果为D等级的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知D是⊙O上一点,AB是直径,∠BAD的平分线交⊙O于点E,⊙O的切线BC交OE的延长线于点C,连接OD,CD.
(1)求证:CD⊥OD.
(2)若AB=2,填空:
①当CE= 时,四边形BCDO是正方形.
②作△AEO关于直线OE对称的△FEO,连接BF,BE,当四边形BEOF是菱形时,求CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com