精英家教网 > 初中数学 > 题目详情

如图,点C的坐标为(0,3),点A的坐标为(,0),点B在轴上方且BA⊥轴,,过点C作CD⊥AB于D,点P是线段OA上一动点,PM∥AB交BC于点M,交CD于点Q,以PM为斜边向右作直角三角形PMN,∠MPN=,PN、MN的延长线交直线AB于E、F,设PO的长为,EF的长为.

1.求线段PM的长(用表示);

2.求点N落在直线AB上时的值

3.求PE是线段MF的垂直平分线时直线PE的解析式;

4.求的函数关系式并写出相应的自变量取值范围.

 

 

 

1.

2.

3.

4.

解析:根据已知的点的坐标和平行以及垂直关系,得到B,D,P,Q坐标的表示,并且由,得到线段PM的长度

第二问中,以PM为斜边向右作直角三角形PMN,∠MPN=,PN、MN的延长线交直线AB于E、F,设PO的长为,EF的长为可知点N落在直线AB上时的值。

第三问,.因为PE是线段MF的垂直平分线,结合中点公式和垂直关系,可得点直线PE的解析式;

第四问中,因为设PO的长为,EF的长为.借助于图形中的垂直和平行的关系,以及角的正切值求解得到。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•桂平市三模)如图,点P的坐标为(2,
3
2
),过点P作x轴的平行线交y轴于点A,交反比例函数y=
k
x
(x>0)的图象于点N;作PM⊥AN交反比例函数y=
k
x
(x>0)的图象于点M,PN=4.
(1)求反比例函数和直线AM的解析式;
(2)求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在直角坐标系中,点C的坐标为(0,-2),点A与点B在x轴上,且点A与点B的横坐标是方程x2-3x-4=0的两个根,点A在点B的左侧.
(1)求经过A、B、C三点的抛物线的关系式.
(2)如图,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②连接CD、CP,△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为
(-
1
2
,-
1
2
(-
1
2
,-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(-1,2),点B的坐标为(2,1),有一点C在x轴上移动,则点C到A、B两点的距离之和的最小值为(  )
A、3
2
B、4
C、3
D、4
2

查看答案和解析>>

同步练习册答案