精英家教网 > 初中数学 > 题目详情

已知:二次函数的图象开口向上,并且经过原点.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.

(1)1;(2)(,-).

解析试题分析:(1)根据二次函数图象开口向上判断出a>0,再把原点坐标代入函数解析式求解即可;
(2)根据配方法的操作整理成顶点式解析式,然后写出顶点坐标即可.
试题解析:(1)∵图象开口向上,
∴a>0,
∵函数图象经过原点O(0,0),
∴a2-1=0,
解得a1=1,a2=-1(舍去),
∴a=1;
(2)y=x2-3x
=x2-3x+
=(x-2-
故抛物线顶点坐标为(,-).
考点: 1.二次函数的性质;2.二次函数的三种形式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.
(1)试求y与x的函数关系式;
(2)为了使每月获得利润为144元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:

 
每件T恤的利润(元)
销售量(件)
第一个月
 
 
清仓时
 
 
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2+bx+c经过(2,-1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为             .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与轴交于A、B两点.

(1)求A、B两点的坐标;
(2)若二次函数的图象经过点A、B,试确定此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2–kx+k–1(k>2).

(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;
(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式;
(3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?

查看答案和解析>>

同步练习册答案