精英家教网 > 初中数学 > 题目详情
2.已知一组数据x1,x2,x3,x4,x5的方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3.

分析 先设数据x1,x2,x3,x4,x5的平均数为$\overline{x}$,由方差S2=$\frac{1}{3}$,则另一组新数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数为3$\overline{x}$-2,方差为S′2,代入公式S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],计算即可.

解答 解:设数据x1,x2,x3,x4,x5的平均数为$\overline{x}$,则另一组新数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数为3$\overline{x}$-2,
∵S2=$\frac{1}{5}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(x5-$\overline{x}$)2]=$\frac{1}{3}$,
∴方差为S′2=$\frac{1}{5}$[(3x1-2-3$\overline{x}$+2)2+(3x2-2-3$\overline{x}$+2)2+…+(3x5-2-3$\overline{x}$+2)2]
=$\frac{1}{5}$[9(x1-$\overline{x}$)2+9(x2-$\overline{x}$)2+…+9(x5-$\overline{x}$)2]
=$\frac{1}{3}$×9
=3,
故答案为3.

点评 本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,且∠A=∠PDB.
(1)求证:PD是⊙O的切线;
(2)如图2,点M是$\widehat{AB}$ 的中点,连接DM,交AB于点N,若tan∠A=$\frac{1}{4}$,求$\frac{DN}{MN}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,?ABCD中,E为AD的中点,BE、CD相交于点F.
(1)求证:AB=DF
(2)若△DEF的面积为S1,△BCF的面积为S2,且S12-S2+4=0,求?ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y=2x+b与双曲线y=$\frac{k}{x}$(k≠0)只有一个公共点A(1,-2).
(1)求k与b的值;
(2)如果直线y=2x+m与双曲线y=$\frac{k}{x}$(k≠0)有两个公共点,请直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知等腰△ABC的顶角∠A=36°(如图).
(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);
(2)证明:△ABC∽△BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克)50607080
销售量y(千克)100908070
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内,如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,分别位于反比例函数y=$\frac{1}{x}$,y=$\frac{k}{x}$在第一象限图象上的两点A、B,与原点O在同一直线上,且$\frac{OA}{OB}$=$\frac{1}{3}$.
(1)求反比例函数y=$\frac{k}{x}$的表达式;
(2)过点A作x轴的平行线交y=$\frac{k}{x}$的图象于点C,连接BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.综合与实践
背景阅读  早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3$\sqrt{2}$,4$\sqrt{2}$,5$\sqrt{2}$的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.

查看答案和解析>>

同步练习册答案