精英家教网 > 初中数学 > 题目详情
5.如图所示,一次函数y=ax+b(a≠0)的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于M、N两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.

分析 (1)将N坐标代入反比例函数解析式求出k的值,确定出反比例解析式,将M坐标代入反比例解析式求出m的值,确定出M坐标,将M与N坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;
(2)由M与N横坐标,以及0,将x轴分为四个范围,找出反比例函数图象位于一次图象上方时x的范围即可.

解答 解:(1)将N(-1,-4)代入反比例解析式得:k=4,即反比例解析式为y=$\frac{4}{x}$,
将M(2,m)代入反比例解析式得:m=2,即M(2,2),
将M与N坐标代入一次函数解析式得:$\left\{\begin{array}{l}{-a+b=-4}\\{2a+b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=-2}\end{array}\right.$,
∴一次函数解析式为y=2x-2;

(2)根据图象得:反比例函数的值大于一次函数的值的x的取值范围为0<x<2或x<-1.

点评 此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.计算:
(1)a(a+b)-b(a-b)
(2)(x-2y)(2y+x)+(2y+x)2-2x(x+2y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知关于x的方程x2+ax-2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为2,求a的值及该方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线y=$\frac{1}{2}$x+2与x轴和y轴分别相交于A、B两点,把△AOB绕原点顺时针旋转90°得到△COD,且抛物线y=ax2b+x+c过A、C、D三点.
(1)求A、B、C、D的坐标;
(2)求抛物线的表达式;
(3)若抛物线在第二象限存在点M,使MA=MB,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AD∥BC,BD平分∠ABC,且∠A:∠ABC=2:1,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知平面内A,B两点和线段m.
(1)用尺规按下列要求作图:
连接AB,并延长线段AB到C,使B是AC的中点;在射线AB上取一点E,使CE=m.
(2)在完成(1)作图的条件下,如果AC=8,m=1.5,求BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:($\sqrt{6}$+2$\sqrt{12}$)×$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.

(1)若AP=8cm,
①运动1s后,求CD的长;
②当D在线段PB运动上时,试说明AC=2CD;
(2)如果t=2s时,CD=1cm,试探索AP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.甲、乙两种水果单价分别为20元/千克,15元/千克,若购买甲、乙两种水果共30千克,恰好用去500元,则购买甲种水果10千克.

查看答案和解析>>

同步练习册答案