精英家教网 > 初中数学 > 题目详情
(2010•珠海)如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.

【答案】分析:(1)根据折叠的性质知:∠CBD、∠DBE、∠EBA都相等,因此∠ABE=∠CBD=30°;
在Rt△ABE中,已知了∠ABE=30°,而AB=OC=6,由此可求出BE即BC的长,即可得到B点的坐标;在Rt△BCD中,已知∠CBD的度数及BC的长,通过解直角三角形可求出CD的长,也就得到了D点的坐标,进而可用待定系数法求出直线BD的解析式;
(2)由于∠AEB=∠BEF=60°,易求得∠FEG=60°;在Rt△BEF中,BE的长在(1)中已求得,∠EBF=30°,即可求出EF的长;进而可在Rt△FEG中通过解直角三角形求出FG、GE的值,即可得到H点的坐标,进而可用待定系数法求出抛物线的解析式;
(3)根据直线BD和抛物线的解析式分别表示出M、P的纵坐标,进而可得到MN、PM的表达式,也就能得到关于h、x的函数关系式,可根据所得函数的性质来判断出PM<NM、PM=MN、PM>MN成立的x的取值范围.
解答:解:(1)∠ABE=∠CBD=30°
在△ABE中,AB=6
BC=BE=
CD=BCtan30°=4
∴OD=OC-CD=2
∴B(,6),D(0,2)
设BD所在直线的函数解析式是y=kx+b;


所以BD所在直线的函数解析式是

(2)∵EF=EA=ABtan30°=,∠FEG=180°-∠FEB-∠AEB=60°;
又∵FG⊥OA,
∴FG=EFsin60°=3,GE=EFcos60°=,OG=OA-AE-GE=
又H为FG中点
∴H()(4分)
∵B(,6)、D(0,2)、H()在抛物线y=ax2+bx+c图象上


∴抛物线的解析式是

(3)∵MP=
MN=6-
h=MP-MN=


该函数简图如图所示:
当0<x<时,h<0,即PM<MN
当x=时,h=0,即PM=MN
<x<时,h>0,即PM>MN.
点评:此题主要考查了矩形的性质、图形的折叠变换、一次函数及二次函数解析式的确定、二次函数的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•珠海)如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年河北省邢台市隆尧县尧山中学中考数学模拟试卷(解析版) 题型:填空题

(2010•珠海)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是    cm.

查看答案和解析>>

科目:初中数学 来源:2010年广东省珠海市中考数学试卷(解析版) 题型:解答题

(2010•珠海)如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA、PB、PC、PD.
(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
(2)在(1)的条件下,若cos∠PCB=,求PA的长.

查看答案和解析>>

科目:初中数学 来源:2010年广东省珠海市中考数学试卷(解析版) 题型:解答题

(2010•珠海)如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).

查看答案和解析>>

同步练习册答案