【题目】如图,在□ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.
【答案】(1)证明见解析;(2)菱形,理由见解析
【解析】(1)根据平行四边形的性质即可证出△ADE与△CBF全等;(2)根据直角三角形斜边上的中线等于斜边的一半及平行四边形的判定即可证出四边形BFDE是菱形.
解:(1)证明:在平行四边形ABCD中,∠A=∠C,AD=BC,
∵E、F分别为AB、CD的中点,
∴AE=CF.
在△AED和△CFB中,
∴△AED≌△CFB(SAS);
(2)菱形,若AD⊥BD,则四边形BFDE是菱形.
证明:∵AD⊥BD,
∴△ABD是直角三角形,且∠ADB=90°.
∵E是AB的中点,
∴DE=AB=BE.
∵在ABCD中,E,F分别为边AB,CD的中点,
∴EB∥DF且EB=DF,
∴四边形BFDE是平行四边形.
∴四边形BFDE是菱形.
科目:初中数学 来源: 题型:
【题目】我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.
(1)比较与的大小;
(2)若OH=2,求证:OP∥CD;
(3)设直线MN、CD相交所成的锐角为α,试确定cosα=时,点P的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,点P从A点出发,沿AD边以1的速度向点D运动,点Q从点C开始沿CB边以3的速度向点B运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.设运动时间为t秒,t分别为何值时,四边形PQCD是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式运算中正确的是( )
A. 3x+2y=5xy B. 3x+5x=8x2
C. 10xy2﹣5y2x=5xy2 D. 10x2﹣3x2=7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知不等式组
(1)求不等式组的解集,并写出它的所有整数解;
(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】20筐白菜,以每筐18千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:
(1)20筐白菜中,最重的一筐比最轻的一筐重______千克.
与标准质量的差值(单位:千克) | 3 | 2 | 1.5 | 0 | 1 | 2.5 |
筐数 | 2 | 3 | 2 | 1 | 4 | 8 |
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价1.3元,则出售这20筐白菜可卖多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com