精英家教网 > 初中数学 > 题目详情

【题目】定义:点A与⊙O上所有点的连线段中,长度的最小值称为点A到⊙O的最小距离,记为mA;点A与⊙O上所有点的连线段中,长度的最大值称为点A到⊙O的最大距离,记为MA,如图,⊙O的半径为r,点A在⊙O外,且OAd,则mAdr.证明如下:

证明:如图1,设B为圆上任意一点,连结OAOBAB

①当OAB不共线时,ABOAOB

ABdr

②当OAB共线时,ABOAOB

ABdr

综上,ABdr,即mAdr

1)利用刚才的证明,结合所给的图2,⊙O的半径为r,点A在⊙O外,且OAd,探究MA,你的结论是MA   ,请证明你的结论;

2)已知⊙O的半径为2mA4,则MA   

3)在平面直角坐标系中,以原点O为圆心,6为半径作⊙O,第二象限的点A的坐标为(﹣3a),且mA1,求a的值.

【答案】1d+r;(28;(3a4

【解析】

1)由三角形的三边关系可得结论;

2)由mA4drMAdr,可求解;

3)分点A在圆内和圆外两种情况讨论,由勾股定理可求解.

1)结论是MAd+r

如图2

①当OAB不共线时,ABOA+OB

ABd+r

②当点O在线段AB上时,ABOA+OB

ABd+r

综上,ABd+r,即MAd+r

故答案为:d+r

2)∵mA4dr,且r2

d6

MAd+r6+28

故答案为:8

3)如图3,若点A在圆O内,过点AAEx轴,延长OA交圆O于点B

∵点A的坐标为(﹣3a),

EO3AEa

AO

mA1

6AO1

5,且a0

a4

若点A'在在圆O外,过点A'A'Ex轴,连接OA'交圆O于点B'

AO

mA1

AO61

7,且a0

a

综上所述:a4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,AB为切点,D为⊙O上一点.

1)求证:∠P180°2D

2)如图,PEBDAD于点E,若DE2AEtanOPE,⊙O的半径为2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,CACB,∠ACBαα180°).点P是平面内不与AC重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接ADCP.点MAB的中点,点NAD的中点.

1)问题发现:如图1,当α60°时,的值是   ,直线MN与直线PC相交所成的较小角的度数是   

2)类比探究:如图2,当α120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.

3)解决问题:如图3,当α90°时,若点ECB的中点,点P在直线ME上,请直接写出点BPD在同一条直线上时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

A型利润(元/件)

B型利润(元/件)

甲店

180

150

乙店

120

110

1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;

2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;

3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的AB型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°BC+,点D为边AB上一点,连接CD.将ACD沿直线CD翻折至ECDCE恰好过AB的中点F.连接AECD的延长线于点H,若∠ACD15°,则DH的长为(  )

A.B.C.D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,AB4DE分别为射线CBAC上的两动点,且BDCE,直线ADBE相交于M点,则CM的最大值为(  )

A.2B.C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,∠BAC90°D为平面内的一点.

1)如图1,当点D在边BC上时,且∠BAD30°,求证:ADBD

2)如图2,当点DABC的外部,且满足∠BDC﹣∠ADC45°,求证:BDAD

3)如图3,若AB4,当DE分别为ABAC的中点,把DAEA点顺时针旋转,设旋转角为α0α≤180°),直线BDCE的交点为P,连接PA,直接写出PAC面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC6m,跨度AB20m,有5根支柱:AGMNCDEFBH,相邻两支柱的距离均为5m

1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;

2)若支柱每米造价为2万元,求5根支柱的总造价;

3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是;④当时,,其中正确的结论有__________

查看答案和解析>>

同步练习册答案