精英家教网 > 初中数学 > 题目详情
(2012•房山区一模)如图,点F在线段AB上,AD∥BC,AC交DF于点E,∠BAC=∠ADF,AE=BC.
求证:△ACD是等腰三角形.
分析:由AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由∠BAC=∠ADF,AE=BC,利用AAS得到三角形ADE与三角形ABC全等,根据全等三角形的对应边相等得到AD=AC,即三角形ADC为等腰三角形.
解答:证明:∵AD∥BC,
∴∠CAD=∠BCA,即∠EAD=∠BCA,…(1分)
在△ADE和△CAB中,
∠EDA=∠BAC
∠EAD=∠BCA
AE=CB

∴△ADE≌△CAB(AAS),…(3分)
∴AD=AC,…(4分)
∴△ACD是等腰三角形.…(5分)
点评:此题考查了平行线的性质,以及全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•房山区一模)下列每两个数中,互为相反数的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•房山区一模)已知某多边形的每一个外角都是72°,则它的边数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•房山区一模)计算:(
1
5
)-1
-4cos45°+|1-
2
|
-(-2012)0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•房山区一模)如图1,在△ABC中,∠ACB=90°,AC=BC=
5
,以点B为圆心,以
2
为半径作圆.
(1)设点P为⊙B上的一个动点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA,DB,PB,如图2.求证:AD=BP;
(2)在(1)的条件下,若∠CPB=135°,则BD=
2
2
或2
2
2
或2

(3)在(1)的条件下,当∠PBC=
135
135
° 时,BD有最大值,且最大值为
10
+
2
10
+
2
;当∠PBC=
45
45
° 时,BD有最小值,且最小值为
10
-
2
10
-
2

查看答案和解析>>

同步练习册答案