【题目】(1)发现问题:如图①平行四边形AB、CD的对角线相交于点O,DE∥AC,CE∥BD,可知:四边形OCED是什么形(不需要证明).
(2)类比探究:如图②矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,四边形OCED是什么形,请说明理由;
(3)拓展应用:如图③,菱形ABCD的对角线相交于点O,∠ABC=60°,BC=4,DE∥AC交BC的延长线于点F,CE∥BD求四边形ABFD的周长.
【答案】(1)平行四边形;(2)菱形,证明见解析;(3)20.
【解析】
(1)利用两组对边平行的四边形是平行四边形;
(2)先判断出四边形OCED是平行四边形,再用矩形的性质即可得出结论;
(3)先判断出三角形CDF是等边三角形,即可得出结论.
(1)∵DE∥AC,CE∥BD
∴四边形OCED是平行四边形,
故答案为:平行四边形;
(2)四边形OCED是菱形,
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴OC=OD,
∴OCED是菱形,
故答案为:菱形.
(3)∵AD∥BC,DE∥AC,
∴四边形ACFD是平行四边形,
∵四边形ABCD是菱形,∠ABC=60°,BC=4,
∴AD=BC=AB=DC=4,∠DCF=60°,
∴△DCF是等边三角形,
∴CF=DF=CD=4,
∴四边形ABFD的周长为AB+BC+CF+DF+AD=4×5=20.
科目:初中数学 来源: 题型:
【题目】芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为( )
A.60°B.45°C.65.5°D.52.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。
(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?
(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线l:y=mx﹣m+1(m为常数,且m≠0)与坐标轴交于A、B两点,若△AOB(O是原点)的面积恰为2,则符合要求的直线l有( )
A.1条
B.2条
C.3条
D.4条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是AB的中点,的延长线于点E,连接AE,过点A作交DP于点F,连接BF、下列结论中:≌;;是等边三角形;;其中正确的是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角梯形ABCD中, , , , .
(1)如图1,连接AC,求证:CA是的平分线;
(2)线段BC上一点E,将 沿AE翻折,点B落到点F处,射线EF与线段CD交于点M.
①如图2,当点M与点D重合时,求证: ;
②如图3,当点M不与点D重合时,求证: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算或化简:
(1)2﹣1+
(2)2x2y(﹣3xy)÷(xy)2
(3)(﹣2a)(3a2﹣a+3)
(4)(x+3)(x+4)﹣(x﹣1)2
(5)[2a3x2(a﹣2x)﹣a2x2]÷(﹣ax)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.
(1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com