精英家教网 > 初中数学 > 题目详情
6、(1)延长射线OM; (2)平角是一条射线;(3)线段、射线都是直线的一部分;(4)锐角一定小于它的余角;(5)大于直角的角是钝角;(6)一个锐角的补角与这个锐角的余角的差是90°; (7)相等的两个角是对顶角; (8)若∠A+∠B+∠C=180°,则这三个角互补;(9)互为邻补角的两个角的平分线互相垂直.以上说法正确的有(  )
分析:利用对顶角,邻补角,直线,射线,线段,角的概念,余角和补角等知识点逐项进行分析即可作出判断.
解答:解:(1)射线有起点,终点在无穷远处,无法延长,故(1)错误;
(2)角的定义是具有公共点的两条射线组成的图形.故(2)错误;
(3)在直线上画两点,两点之间的部分就是一条线段,在直线上画一点,这点把直线分成两部分,这两部分就是两个相反方向的射线.所以线段和射线都是直线的一部分.故(3)正确;
(4)两个角的和等于90°,就说这两个角互为余角.如45°+45°=90°,故(4)错误;
(5)根据直角的定义可知,大于直角而小于平角的角叫做钝角,故(5)错误;
(6)因为补角=180°-这个角,而余角=90°-这个角,故(6)项正确;
(7)相等的两个角有很多情况如是两条直线平行时,同位角相等等,故(7)错误;
(8)两个角的和等于180°就说这两个角互为补角,故(8)错误;
(9)根据角平分线的性质,互为邻补角的两个角的平分线互相垂直,故(9)正确.
所以③⑥⑨正确.
故选B.
点评:此题主要考查学生对对顶角,邻补角,直线,射线,线段,角的概念,余角和补角等知识点的理解和掌握,此题难度不大,但涉及到的知识点较多,过于琐碎,很容易混淆.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

小明按下面的方法作出了∠MON的平分线:
①反向延长射线OM;
②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长精英家教网线于点C;
③连接CB;
④以O为顶点,OA为一边作∠AOP=∠OCB.
(1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,小明按下面的方法作∠MON的平分线:
(1)反向延长射线OM;
(2)以O为圆心,任意长为半径作圆,分别交∠MON的两边于点A,B,交射线OM的反向延长线于点C;
(3)连接OB;
(4)以O为顶点,OA为一边作∠AOP=∠OCB.
(i)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(ii)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°,OF=10时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、下列说法中正确的是(  )

查看答案和解析>>

科目:初中数学 来源:第28章《圆》中考题集(22):28.1 圆的认识(解析版) 题型:解答题

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

小明按下面的方法作出了∠MON的平分线:
①反向延长射线OM;
②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长线于点C;
③连接CB;
④以O为顶点,OA为一边作∠AOP=∠OCB.
(1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长.

查看答案和解析>>

同步练习册答案