精英家教网 > 初中数学 > 题目详情
17.完成证明,说明理由.
已知:如图,点D在BC边上,DE、AB交于点F,AC∥DE,∠1=∠2,∠3=∠4.
求证:AE∥BC.
证明:∵AC∥DE(已知),
∴∠4=∠FAC(两直线平行,同位角相等 )
∵∠3=∠4(已知),
∴∠3=∠FAC(等量代换 )
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(等式的性质)
即∠FAC=∠EAD,
∴∠3=∠EAD.
∴AE∥BC(内错角相等,两直线平行 )

分析 首先根据平行线的性质可得∠4=∠FAC,然后可得∠3=∠FAC,再证明∠FAC=∠EAD,从而可得∠3=∠EAD,根据平行线的判定可得AE∥BC.

解答 解:∵AC∥DE(已知),
∴∠4=∠FAC(两直线平行,同位角相等)
∵∠3=∠4(已知),
∴∠3=∠FAC(等量代换)
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(等式的性质)
即∠FAC=∠EAD,
∴∠3=∠EAD.
∴AE∥BC(内错角相等,两直线平行 ).
故答案为:∠FAC;两直线平行,同位角相等;∠FAC;等量代换;等式的性质;∠EAD;内错角相等,两直线平行.

点评 此题主要考查了平行线的判定和性质,关键是掌握两直线平行,同位角相等;内错角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简:$\frac{a+1}{a-3}$-$\frac{a-3}{a+2}$÷$\frac{a^2-6a+9}{a^2-4}$,然后a在3,2,-2和-3四个数中任选一个合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.九(1)班一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男生、女生人数之比为(  )
A.1:2B.2:1C.2:3D.3:2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解下列不等式组:
(1)$\left\{\begin{array}{l}{3x-15>0}\\{7x-2<8x}\end{array}\right.$
(2)$\left\{\begin{array}{l}{5x-4≤2x+5}\\{7+2x≤6+3x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算题:
(1)($\sqrt{50}-\sqrt{18}$)$÷\sqrt{2}×\frac{1}{\sqrt{2}}$;
(2)4a2$\sqrt{\frac{1}{8a}}-7\sqrt{2{a}^{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若式子$\sqrt{2x+1}$在实数范围内有意义,则x的取值范围是(  )
A.x$≤-\frac{1}{2}$B.x$≥-\frac{1}{2}$C.x$<-\frac{1}{2}$D.x$>-\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一组数据x-18,y+13,z-25的平均数是12,其中x,y,z为连续的偶数,且x<y<z,则这组数据的三个数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动.运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.
(1)用含t的代数式分别表示点E,点F的坐标.
(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值.
(3)是否存在这样的t,使得以D,E,F,O′所围成的四边形中有一组对边平行?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某居民小区共有300户家庭,有关部门对该小区的自来水管网系统进行改进,为此需了解该小区自来水用水量的情况,该部门通过随机抽样,调查了其中20户家庭,统计了这20户家庭的月用水量,见如表:
月用水量(m3467121415
户数246224
(1)这个问题中样本是其中20户家庭自来水用水量,样本容量是20;
(2)计算这20户家庭的平均月用水量;
(3)根据上述数据,估计该小区300户家庭的月总用水量.

查看答案和解析>>

同步练习册答案