精英家教网 > 初中数学 > 题目详情

【题目】夏季是垂钓的好季节.一天甲、乙两人到松花江的处钓鱼,突然发现在处有一人不慎落入江中呼喊救命.如图,在处测得处在的北偏东方向,紧急关头,甲、乙二人准备马上救人,只见甲马上从处跳水游向处救人;此时乙从沿岸边往正东方向奔跑40米到达处,再从处下水游向处救人,已知处在的北偏东方向上,且甲、乙二人在水中游进的速度均为1/秒,乙在岸边上奔跑的速度为8/秒.(注:水速忽略不计)

1)求的长.

2)试问甲、乙二人谁能先救到人,请通过计算说明理由.(

【答案】1米,米,(2)乙先到达救人地点.

【解析】

1)过点AADCD于点D,分别在RtABDRtACD中用式子表示 再利用锐角三角函数列方程,解方程即可.

2)分别计算出甲乙到达落水点的时间即可得到答案.

解(1);过点AADCD于点D,由题意得:

2

乙在水中所花时间为:

乙到达的时间为:

甲到达的时间为:

乙先到达救人地点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市自来水公司为限制单位用水,每月只给某单位计划内用水 3000 吨,计划内用水每吨收费 0.5元,超计划部分每吨按 0.8 元收费.

1)写出该单位水费 y(元)与每月用水量 x(吨)之间的函数关系式:(写出自变量取值范围)

用水量小于等于 3000

用水量大于 3000

2)某月该单位用水 3200 吨,水费是 元;若用水 2800 吨,水费 元.

3)若某月该单位缴纳水费 1580 元,则该单位用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCDEF分别是边ADBC的中点,AC分别交BEDF于点MN,对于下列结论:①△ABE≌△CDF;②AM=MN=NC;③EM=BM,④SABM=SAME,其中正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学以“你最喜欢的运动项目”为主题,对公园里参加运动的群众进行随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择).下面是小明根据调查结果列出的统计表和绘制的扇形统计图(不完整).

被调查者男、女所选项目人数统计表

项目

男(人数)

女(人数)

广场舞

7

9

健步走

4

器械

2

2

跑步

5

根据以上信息回答下列问题:

1)统计表中的____________________.

2)扇形统计图中“广场舞”项目所对应扇形的圆心角度数为__________°.

3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步”的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,为对角线,过点,交于点,点上,于点,且,则线段的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,延长平行四边形的边到点,使,连接于点

1)求证:

2)连接,若,求证四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是线段AB上一点,C、D两点分别从P、B出发以1cm/s、2 cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)

(1)C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:

(2)(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求的值。

(3)(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点CAD在同一条直线上,∠ABC=∠ADE=α,线段 BDCE交于点M

(1)如图1,若AB=ACAD=AE

①问线段BDCE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);

(2)如图2,若AB= BC=kACAD =ED=kAE 则线段BDCE的数量关系为 ,∠BMC= (用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).

查看答案和解析>>

同步练习册答案