精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DEAB,将正方形平移,使点D保持在AC上(D不与A重合),设AF=x,正方形与△ABC重叠部分的面积为y.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)x为何值时y的值最大?
(3)x在哪个范围取值时y的值随x的增大而减小?
(1)∵AB=AC,
∴∠B=∠C,
∵DEAB,
∴∠B=∠CED,∠AFD=∠FDE=90°,
∴∠C=∠CED,
∴DC=DE.(2分)
在Rt△ADF中,∵∠A=45°,
∴∠ADF=45°=∠A,
∴AF=DF=x,
AD=
x
cos45°
=
2
x
,(3分)
DC=DE=1-
2
x
,(4分)
∴y=
1
2
(DE+FB)×DF=
1
2
(1-
2
x+1-x)x=-
1
2
2
+1)x2+x.
∵点D保持在AC上,且D不与A重合,
∴0<AD≤1,
∴0<
2
x≤1,
∴0<x≤
2
2

故y=-
1
2
2
+1)x2+x,自变量x的取值范围是0<x≤
2
2
;(8分)

(2)∵y=-
1
2
2
+1)x2+x,
∴当x=-
1
2×(-
1
2
)(
2
+1)
=
2
-1
2
2
时,y有最大值;(10分)

(3)∵y=-
1
2
2
+1)x2+x,0<x≤
2
2
,-
1
2
<0,
∴当
2
-1≤x≤
2
2
时,y随x的增大而减小.(14分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m.
(1)在如图所示的平面直角坐标系中,求出抛物线解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m.求水面在正常水位基础上涨多少m时,就会影响过往船只?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为30
2
米,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=
2
m
x2-2x
与x轴负半轴交于点A,顶点为B,且对称轴与x轴交于点C.
(1)求点B的坐标(用含m的代数式表示);
(2)D为BO中点,直线AD交y轴于E,若点E的坐标为(0,2),求抛物线的解析式;
(3)在(2)的条件下,点M在直线BO上,且使得△AMC的周长最小,P在抛物线上,Q在直线BC上,若以A、M、P、Q为顶点的四边形是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,O为坐标原点,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为P.
(1)求这个二次函数的解析式;
(2)顶点P的坐标为______;此抛物线与x轴的另一个交点B的坐标为______;
(3)若抛物线与y轴交于C点,求△ABC的面积;
(4)在x轴上方的抛物线上是否存在一点D,使△ABD的面积等于△ABC的面积?若存在,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,y轴是边长为2的等边△BAD的对称轴,x轴是等腰△BDC的对称轴.
(1)试求出经过点A、点B,且对称轴为直线x=1的抛物线的解析式;
(2)把△BDC沿着直线BD翻折后,得到△BDC'.
①问点C'是否在(1)中的抛物线上?
②设BC'交直线x=1于点Q.若点P是(1)中的抛物线上的一个动点,过点P作PT⊥直线x=1,垂足为T,问:在抛物线上是否存在着点P,使得以P、T、Q为顶点的三角形与△QDC'相似?若存在,写出所有符合上述条件的点P的横坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为______、______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:
x35911
y181462
(1)在直角坐标系中
①根据表中提供的数据描出实数对(x,y)的对应点;
②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.并说明当x≥12时对应图象的实际意义.
(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:
①试求日销售利润P元与日销售单价x元之间的函数关系式;
②当日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出,并说明其实际意义;若无,请说明理由.

查看答案和解析>>

同步练习册答案