精英家教网 > 初中数学 > 题目详情

已知直线数学公式,那么这条直线在y轴上的截距是________.

-1.5
分析:把x=0代入直线的解析式,求出y即可.
解答:
把x=0代入得:y=×(0-3)=-1.5.
故答案为:-1.5.
点评:本题考查了一次函数图象上点的坐标特征,注意:直线y=kx+b在y轴上的截距是b.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=-x2+2mx-m2-m+2.
(1)若抛物线与x轴有两个交点,与y轴交于点(0,-4),求出这条抛物线的解析式及顶点C的坐标;
(2)试说明对任何实数m,抛物线的顶点都在某一次函数的图象L上,并求出L的解析式;
(3)若(2)中直线L交x轴于点A,试在y轴求一点M,使|MC-MA|的值最大(C为(1)中抛物线的顶点);
(4)若(1)中所求抛物线的对称轴与x轴交于点B.那么在该对称轴上是否存在点P,使⊙P与直线L和x轴同时相切.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=-x2+2mx-m2-m+2.
(1)若抛物线与x轴有两个交点,与y轴交于点(0,-4),求出这条抛物线的解析式及顶点C的坐标;
(2)试说明对任何实数m,抛物线的顶点都在某一次函数的图象L上,并求出L的解析式;
(3)若(2)中直线L交x轴于点A,试在y轴求一点M,使|MC-MA|的值最大(C为(1)中抛物线的顶点);
(4)若(1)中所求抛物线的对称轴与x轴交于点B.那么在该对称轴上是否存在点P,使⊙P与直线L和x轴同时相切.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年最佳中考数学模拟试卷(三)(解析版) 题型:解答题

已知抛物线y=-x2+2mx-m2-m+2.
(1)若抛物线与x轴有两个交点,与y轴交于点(0,-4),求出这条抛物线的解析式及顶点C的坐标;
(2)试说明对任何实数m,抛物线的顶点都在某一次函数的图象L上,并求出L的解析式;
(3)若(2)中直线L交x轴于点A,试在y轴求一点M,使|MC-MA|的值最大(C为(1)中抛物线的顶点);
(4)若(1)中所求抛物线的对称轴与x轴交于点B.那么在该对称轴上是否存在点P,使⊙P与直线L和x轴同时相切.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD的边长AB=kk是正整数),等边三角形PAE的顶点P在正方形内,顶点E在边AB上,且AE=1. 将等边三角形PAE在正方形内按图1中所示的方式,沿着正方形的边ABBCCDDAAB、…连续地翻转n次,使顶点P第一次回到原来的起始位置.

(1)如果我们把正方形ABCD的边展开在一条直线上,那么这一翻转过程可以看作是等边三角形PAE在直线上作连续的翻转运动. 图2是k=1时,等边三角形PAE沿正方形的边连续翻转过程的展开示意图.请你探索:若k=1,则等边三角形PAE沿正方形的边连续翻转的次数n=     时, 顶点P第一次回到原来的起始位置.

(2)若k=3,则等边三角形PAE沿正方形的边连续翻转的次数n=    时,顶点P第一次回到原来的起始位置;

(3)使顶点P第一次回到原来的起始位置时,若等边三角形PAE沿正方形的边连续翻转的次数是60,则正方形ABCD的边长AB=       .

查看答案和解析>>

同步练习册答案