【题目】已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.
【答案】70°.
【解析】
试题分析:由PA与PB都为圆的切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,可得出∠OAP与∠OBP都为直角,又OA=OB,根据等边对等角可得∠ABO与∠BAC相等,由∠BAC的度数求出∠ABO的度数,进而利用三角形的内角和定理求出∠AOB的度数,在四边形APBO中,利用四边形的内角和定理即可求出∠P的度数.
试题解析:∵PA,PB分别是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
∵OA=OB,∠BAC=35°
∴∠ABO=∠BAC=35°,
∴∠AOB=180°-35°-35°=110°,
在四边形APBO中,∠OAP=∠OBP=90°,∠AOB=110°,
则∠P=360°-(∠OAP+∠OBP+∠AOB)=70°.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,点D、E在边AC上,AD=4cm,点E是CD的中点,以DE为边的矩形DEFG的顶点G在边AB上,动点P从点A出发,以1cm/s的速度沿AC向点C运动,过点P作PQ∥AB交BC于点Q,设点P的运动时间为t(s),矩形DEFG与△PCQ重叠部分图形的面积为s(cm2).
(1)在点P的运动过程中,当线段PQ与矩形DEFG的边DG有交点,令交点为H,用含t的代数式表示线段DH的长.
(2)求s与t的函数关系式.
(3)点P出发的同时,动点M从点D出发,以acm/s的速度沿D-G-F-E-F运动,点N是线段PQ中点,在点P的运动过程中,若点M、N能够重合在矩形DEFG的边上,求动点M的速度a.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P在x轴上,且到y轴的距离为5,则点P的坐标是( )
A. (5,0) B. (0,5)
C. (5,0)或(-5,0) D. (0,5)或(0,-5)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com