【题目】如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.
【答案】解:当AB=CD时,四边形EGFH是菱形. 证明:∵点E,G分别是AD,BD的中点,
∴EG AB,同理HF AB,∴EG HF.
∴四边形EGFH是平行四边形.
∵EG= AB,又可同理证得EH= CD,
∵AB=CD,∴EG=EH,
∴四边形EGFH是菱形
【解析】本题可根据菱形的定义来求解.E、G分别是AD,BD的中点,那么EG就是三角形ADB的中位线,同理,HF是三角形ABC的中位线,因此EG、HF同时平行且相等于AB,因此EG∥=HF. 因此四边形EHFG是平行四边形,E、H是AD,AC的中点,那么EH= CD,要想证明EHFG是菱形,那么就需证明EG=EH,那么就需要AB、CD满足AB=CD的条件.
【考点精析】关于本题考查的三角形中位线定理和菱形的判定方法,需要了解连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为( )
A.(160+x)(100+x)=160×100×2
B.(160+2x)(100+2x)=160×100×2
C.(160+x)(100+x)=160×100
D.2(160x+100x)=160×100
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.
(1)若∠E=∠F时,求证:∠ADC=∠ABC;
(2)若∠E=∠F=42°时,求∠A的度数;
(3)若∠E= ,∠F= ,且≠.请你用含有、的代数式表示∠A的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B =∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,填空:
线段DE与AC的位置关系是 ;
设△BDC的面积为,△AEC的面积为,则与的数量关系是 .
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中与的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高DM和AN,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使,请求出相应的BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于按固定顺序的个数: , , , , ,称为数列, , , , ,其中为整数且.
定义.
例如,若数列, , , , ,则.
根据以上材料,回答下列问题:
()已知数列, , ,求.
()已知数列, , , , 中个数均为非负数,且,直接写出的最大值和最小值.
()已知数列, , , ,其中, , , ,为个整数,且, , ,直接写出所有可能的数列中至少两种.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)请你数一数,图中有多少个小于平角的角?分别是哪些角?
(2)求∠DOB的度数;
(3)请你通过计算说明OE是否平分∠COB?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D是弧AE上一点,且∠BDE=∠CBE,BD与AE交于点F.
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE,求证:DE2=DF·DB;
(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com