精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点B02),A(﹣6,﹣1)在反比例函数的图象上,作射线AB,再将射线AB绕点A逆时针旋转45°后,交反比例函数图象于点C,则点C的坐标为_____

【答案】18

【解析】

BBDACD,过DDEy轴于E,过AAFDEF,则ABD为等腰直角三角形,易得AFD≌△DEB,依据全等三角形的性质,即可得出D),进而得出直线AD的解析式,解方程组即可得到C点坐标.

解:如图所示,过BBDACD,过DDEy轴于E,过AAFDEF

AB绕点A逆时针旋转45°BDAC

∴∠DAB=DBA=45°

AD=BD,即ABD为等腰直角三角形

又∵BD⊥AC,过DDEy轴于E,过AAFDEF

∴∠AFD=BED=90°,∠ADF+BDE=90°,∠ADF+FAD=90°

∴∠BDE=FAD

AFD≌△DEBAAS),

DFBEa

B02),A(﹣6,﹣1),

OEa+2GFDE6aAFa+3

AFDE

a+36a

解得a

D),

设直线AD的解析式为yk'x+b,则

解得

y3x+17

A(﹣6,﹣1)在反比例函数的图象上,

k6,即y

解方程组,可得

C的坐标为(18),

故答案为:(18).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店分两次购进两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:

购进数量(件)

购进所需费用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求两种商品每件的进价分别是多少元?

2)商场决定商品以每件50元出售,商品以每件元出售.为满足市场需求,需购进两种商品共件,且商品的数量不少于商品数量的倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴的两个交点分别是为顶点.

1)求的值和顶点的坐标;

2)在轴上是否存在点,使得是以为斜边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y千克)是销售单价x元)的一次函数,且当x=60时 ,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元

1)3分)求出y与x的函数关系式,并写出自变量x的取值范围

2)3分)求该公司销售该原料日获利w与销售单价x之间的函数关系式

3)4分)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】开学初期,天气炎热,水杯需求量大.双福育才中学门口某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B种水杯进价为每个12元,售价为每个20

1)该超市平均每天可售出60A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让学生得到更多的优惠,某天该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.

2)该超市准备花费不超过1600元的资金,购进AB两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘货轮以34海里/时的速度在海面上向正南方向航行,当它行驶至B处时,某观察者发现在货轮的北偏东75°方向有一灯塔C;货轮继续向南航行1.5小时后到达A处,某观察者再次发现灯塔C在货轮的东北方向.求此时货轮与灯塔C的距离.(结果保留到个位)(参考数据:sin75°≈0.97cos75°≈0.29tan75°≈3.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的弦,为半径的中点,过交弦于点,交于点,且

1)求证:的切线;

2)连接,求的度数:

3)如果,求的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点AD为圆心,以大于的长为半径在AD的两侧作弧,交于两点MN;第二步,连结MN,分别交ABAC于点EF;第三步,连结DEDF..若BD=6AF=4CD=3,则BE的长是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,是⊙上一点,半径的延长线与过点的直线交于点

1)求证:是⊙的切线;

2)若,求弦的长.

查看答案和解析>>

同步练习册答案