分析 (1)根据等边三角形的性质可得AB=DB,BC=BE,∠ABD=∠CBE=60°,再求出∠DBC=∠ABE,再利用“边角边”证明△ABE和△DBC全等,根据全等三角形对应边相等证明即可;
(2)根据全等三角形对应角相等可得∠AEB=∠DCB,然后求出∠CEF+∠ECF=∠BEC+∠BCE=120°,再根据三角形的内角和等于180°列式计算即可得解.
解答 (1)证明:∵△ABD和△BCE都是等边三角形,
∴AB=DB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
即∠DBC=∠ABE,
在△ABE和△DBC中,$\left\{\begin{array}{l}{AB=DB}\\{∠DBC=∠ABE}\\{BC=BE}\end{array}\right.$,
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)解:∵△ABE≌△DBC,
∴∠AEB=∠DCB,
∴∠CEF+∠ECF,
=∠CEF+∠BCE+∠DCB,
=∠CEF+∠AEB+∠DCB,
=∠BEC+∠BCE,
=60°+60°,
=120°,
在△CEF中,∠CFE=180°-(∠CEF+∠ECF)=180°-120°=60°.
点评 本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握三角形全等的判定方法并准确识图确定出全等的三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com