A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答 解:①由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故①正确;
②抛物线的对称轴为x=-$\frac{b}{2a}$=1,则b=-2a,2a+b=0,故②错误;
③抛物线开口向上,得:a>0;b=-2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;故③正确;
④观察图象得当x=-2时,y>0,
即4a-2b+c>0,
∵b=-2a,
∴4a+4a+c>0,即8a+c>0,故④正确;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;
综上所述,正确的说法是:①③④⑤.
故选D.
点评 主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com